Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, South Australia, Australia; Quality Use of Medicines and Pharmacy Research Centre, School of Pharmacy and Medical Sciences, University of South Australia, Australia.
Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, UNSW Sydney, New South Wales, Australia.
J Affect Disord. 2020 Apr 15;267:42-48. doi: 10.1016/j.jad.2020.02.001. Epub 2020 Feb 5.
At present, no predictive markers for Major Depressive Disorder (MDD) exist. The search for such markers has been challenging due to clinical and molecular heterogeneity of MDD, the lack of statistical power in studies and suboptimal statistical tools applied to multidimensional data. Machine learning is a powerful approach to mitigate some of these limitations.
We aimed to identify the predictive markers of recurrent MDD in the elderly using peripheral whole blood from the Sydney Memory and Aging Study (SMAS) (N = 521, aged over 65) and adopting machine learning methodology on transcriptome data. Fuzzy Forests is a Random Forests-based classification algorithm that takes advantage of the co-expression network structure between genes; it allows to alleviate the problem of p >> n via reducing the dimensionality of transcriptomic feature space.
By adopting Fuzzy Forests on transcriptome data, we found that the downregulated TFRC (transferrin receptor) can predict recurrent MDD with an accuracy of 63%.
Although we corrected our data for several important confounders, we were not able to account for the comorbidities and medication taken, which may be numerous in the elderly and might have affected the levels of gene transcription.
We found that downregulated TFRC is predictive of recurrent MDD, which is consistent with the previous literature, indicating the role of the innate immune system in depression. This study is the first to successfully apply Fuzzy Forests methodology on psychiatric condition, opening, therefore, a methodological avenue that can lead to clinically useful predictive markers of complex traits.
目前,尚未发现重度抑郁症(MDD)的预测标志物。由于 MDD 的临床和分子异质性、研究中统计能力的缺乏以及应用于多维数据的统计工具不理想,因此寻找此类标志物一直具有挑战性。机器学习是缓解这些限制的一种强大方法。
我们旨在使用来自悉尼记忆与衰老研究(SMAS)的外周全血(N=521,年龄在 65 岁以上),并采用基于转录组数据的机器学习方法,来确定老年人复发性 MDD 的预测标志物。模糊森林(Fuzzy Forests)是一种基于随机森林的分类算法,它利用基因之间的共表达网络结构;它允许通过减少转录组特征空间的维数来缓解 p>>n 的问题。
通过在转录组数据上采用模糊森林,我们发现下调的 TFRC(转铁蛋白受体)可以以 63%的准确率预测复发性 MDD。
尽管我们针对几个重要的混杂因素对数据进行了校正,但我们无法解释老年人中可能存在的多种合并症和服用的药物,这些因素可能会影响基因转录水平。
我们发现下调的 TFRC 可预测复发性 MDD,这与之前的文献一致,表明先天免疫系统在抑郁症中的作用。这项研究首次成功地将模糊森林方法应用于精神疾病,为复杂特征的临床有用预测标志物开辟了一条方法途径。