Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France.
Université Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, F-38700, La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404, Jerusalem, Israel.
Biosystems. 2020 May;191-192:104116. doi: 10.1016/j.biosystems.2020.104116. Epub 2020 Feb 18.
Deaminations C->T and A->G are frequent mutations producing nucleotide content gradients across genomes proportional to singlestrandedness during replication/transcription. Hence, within single codons, deamination risks increase from first to third codon positions, while second codon positions are functionally most crucial. Here genetic codes are analyzed assuming that after anticodons protected codons from deaminations, first and second codon positions swapped (N2N1N3->N1N2N3), with lowest deamination risks for N2 in presumed primitive N2N1N3 codons. N2N1N3, not standard N1N2N3, codon structure minimizes deaminations inversely proportionally to cognate amino acid hydrophobicity and parallel betasheet conformational preference. For N1N2N3, deamination minimization increases with genetic code integration order of cognate amino acids: during the presumed N2N1N3->N1N2N3 codon structure transition, protein synthesis combined direct codon-amino acid interactions for late amino acids and tRNA-based translation for early amino acids. Hence N2N1N3 codons would correspond to tRNA-free translation by spontaneous codon-amino acid affinities, and tRNA-mediated translation presumably caused N2N1N3->N1N2N3 swaps. Results show that rational, not arbitrary rules link codon and amino acid structures. Some analyses detect mitochondrial RNAs and peptides in public data corresponding to systematic position swaps, suggesting occasional swapping polymerase activity.
脱氨酶导致的 C->T 和 A->G 突变是常见现象,这些突变会在复制/转录过程中产生与单链状态成正比的核苷酸含量梯度。因此,在单个密码子中,脱氨酶的风险从第一位密码子增加到第三位密码子,而第二位密码子在功能上是最重要的。在这里,假设反密码子保护密码子免受脱氨酶的影响后,第一个和第二个密码子位置发生了交换(N2N1N3->N1N2N3),那么在假定的原始 N2N1N3 密码子中,N2 的脱氨酶风险最低。N2N1N3 而不是标准的 N1N2N3 密码子结构,使脱氨酶风险最小化,与同源氨基酸疏水性成反比,并与β折叠构象偏好平行。对于 N1N2N3,脱氨酶最小化随着同源氨基酸的遗传密码整合顺序而增加:在假定的 N2N1N3->N1N2N3 密码子结构转换期间,蛋白质合成结合了晚期氨基酸的直接密码子-氨基酸相互作用和早期氨基酸的 tRNA 翻译。因此,N2N1N3 密码子对应于无 tRNA 的翻译,由自发的密码子-氨基酸亲和力驱动,而 tRNA 介导的翻译可能导致 N2N1N3->N1N2N3 交换。结果表明,合理的规则而不是任意的规则将密码子和氨基酸结构联系起来。一些分析在公共数据中检测到与系统位置交换相对应的线粒体 RNA 和肽,这表明偶尔会发生交换聚合酶活性。