Suppr超能文献

在“大数据”时代,挖掘生殖遗传学和表观遗传学在男性不育症中的全部潜能。

Harnessing the full potential of reproductive genetics and epigenetics for male infertility in the era of "big data".

机构信息

Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah.

Division of Urology, Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah; Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah.

出版信息

Fertil Steril. 2020 Mar;113(3):478-488. doi: 10.1016/j.fertnstert.2020.01.001. Epub 2020 Feb 20.

Abstract

The complexity of male reproductive impairment has hampered characterization of the underlying genetic causes of male infertility. However, in the last 20 years, more powerful and affordable tools to interrogate the genetic and epigenetic determinants of male infertility have accelerated the number of new discoveries in the characterization of male infertility. With this explosion of new data, integration in a systems-based approach-including complete phenotypic information-to male infertility is imperative. We briefly review the current understanding of genetic and epigenetic causes of male infertility and how findings may be translated into a practical component for the diagnosis and treatment of male infertility.

摘要

男性生殖障碍的复杂性阻碍了对男性不育潜在遗传原因的描述。然而,在过去的 20 年中,更强大且经济实惠的工具可用于探究男性不育的遗传和表观遗传决定因素,这加速了男性不育特征描述方面的新发现数量。随着这些新数据的大量涌现,必须将男性不育的系统方法(包括完整的表型信息)进行整合。我们简要回顾了当前对男性不育遗传和表观遗传原因的理解,以及这些发现如何转化为男性不育诊断和治疗的实用组成部分。

相似文献

1
Harnessing the full potential of reproductive genetics and epigenetics for male infertility in the era of "big data".
Fertil Steril. 2020 Mar;113(3):478-488. doi: 10.1016/j.fertnstert.2020.01.001. Epub 2020 Feb 20.
2
Male Infertility and the Future of In Vitro Fertilization.
Urol Clin North Am. 2020 May;47(2):257-270. doi: 10.1016/j.ucl.2019.12.012. Epub 2020 Mar 9.
3
The genetic causes of male factor infertility: a review.
Fertil Steril. 2010 Jan;93(1):1-12. doi: 10.1016/j.fertnstert.2009.10.045.
4
Human male infertility: a complex multifactorial phenotype.
Reprod Sci. 2011 May;18(5):418-25. doi: 10.1177/1933719111398148. Epub 2011 Mar 18.
5
Relevance of genetic investigation in male infertility.
J Endocrinol Invest. 2014 May;37(5):415-27. doi: 10.1007/s40618-014-0053-1. Epub 2014 Jan 24.
7
Epigenetic mechanisms within the sperm epigenome and their diagnostic potential.
Best Pract Res Clin Endocrinol Metab. 2020 Dec;34(6):101481. doi: 10.1016/j.beem.2020.101481. Epub 2020 Dec 15.
8
Serving epigenetics before its time.
Trends Genet. 2014 Oct;30(10):427-9. doi: 10.1016/j.tig.2014.08.001.
9
The "omics" of human male infertility: integrating big data in a systems biology approach.
Cell Tissue Res. 2016 Jan;363(1):295-312. doi: 10.1007/s00441-015-2320-7. Epub 2015 Dec 10.
10
Genetics of male infertility.
Urol Clin North Am. 2014 Feb;41(1):1-17. doi: 10.1016/j.ucl.2013.08.009. Epub 2013 Oct 23.

引用本文的文献

2
Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines.
Diseases. 2024 Sep 11;12(9):209. doi: 10.3390/diseases12090209.
3
Epigenetics Role in Spermatozoa Function: Implications in Health and Evolution-An Overview.
Life (Basel). 2023 Jan 29;13(2):364. doi: 10.3390/life13020364.
4
Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability.
Int J Mol Sci. 2023 Feb 8;24(4):3379. doi: 10.3390/ijms24043379.
7
Epigenetic Modifications, A New Approach to Male Infertility Etiology: A Review.
Int J Fertil Steril. 2022 Jan;16(1):1-9. doi: 10.22074/IJFS.2021.138499.1032.
8
Can fever alone alter sperm parameters after severe acute respiratory syndrome coronavirus 2 infection?
Fertil Steril. 2022 Feb;117(2):297. doi: 10.1016/j.fertnstert.2021.11.035. Epub 2021 Dec 31.
9
Epigenetics of Male Infertility: The Role of DNA Methylation.
Front Cell Dev Biol. 2021 Jul 22;9:689624. doi: 10.3389/fcell.2021.689624. eCollection 2021.
10
Metabolic syndrome and male fertility disorders: Is there a causal link?
Rev Endocr Metab Disord. 2021 Dec;22(4):1057-1071. doi: 10.1007/s11154-021-09659-9. Epub 2021 May 26.

本文引用的文献

2
Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF).
J Med Genet. 2019 Oct;56(10):678-684. doi: 10.1136/jmedgenet-2018-105952. Epub 2019 May 31.
3
Benefits and limitations of genome-wide association studies.
Nat Rev Genet. 2019 Aug;20(8):467-484. doi: 10.1038/s41576-019-0127-1.
5
The Neonatal and Adult Human Testis Defined at the Single-Cell Level.
Cell Rep. 2019 Feb 5;26(6):1501-1517.e4. doi: 10.1016/j.celrep.2019.01.045.
6
The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids.
Cell Rep. 2018 Nov 6;25(6):1650-1667.e8. doi: 10.1016/j.celrep.2018.10.026.
7
Paternal germ line aging: DNA methylation age prediction from human sperm.
BMC Genomics. 2018 Oct 22;19(1):763. doi: 10.1186/s12864-018-5153-4.
8
The adult human testis transcriptional cell atlas.
Cell Res. 2018 Dec;28(12):1141-1157. doi: 10.1038/s41422-018-0099-2. Epub 2018 Oct 12.
9
DNA methylation age is accelerated in alcohol dependence.
Transl Psychiatry. 2018 Sep 5;8(1):182. doi: 10.1038/s41398-018-0233-4.
10
Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis.
Cell Stem Cell. 2018 Oct 4;23(4):599-614.e4. doi: 10.1016/j.stem.2018.08.007. Epub 2018 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验