Suppr超能文献

FepA 的 N 结构域在铁肠菌素转运过程中的构象重排。

Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.

机构信息

Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019.

出版信息

J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.

Abstract

The outer membrane receptor FepA transports ferric enterobactin (FeEnt) by an energy- and TonB-dependent, but otherwise a mechanistically undetermined process involving its internal 150-residue N-terminal globular domain (N-domain). We genetically introduced pairs of Cys residues in different regions of the FepA tertiary structure, with the potential to form disulfide bonds. These included Cys pairs on adjacent β-strands of the N-domain (intra-N) and Cys pairs that bridged the external surface of the N-domain to the interior of the C-terminal transmembrane β-barrel (inter-N-C). We characterized FeEnt uptake by these mutants with siderophore nutrition tests, [Fe]Ent binding and uptake experiments, and fluorescence decoy sensor assays. The three methods consistently showed that the intra-N disulfide bonds, which restrict conformational motion within the N-domain, prevented FeEnt uptake, whereas most inter-N-C disulfide bonds did not prevent FeEnt uptake. These outcomes indicate that conformational rearrangements must occur in the N terminus of FepA during FeEnt transport. They also argue against disengagement of the N-domain out of the channel as a rigid body and suggest instead that it remains within the transmembrane pore as FeEnt enters the periplasm.

摘要

外膜受体 FepA 通过能量和 TonB 依赖性但其他机制尚不清楚的过程运输三价 enterobactin (FeEnt),该过程涉及其 150 个残基的内部 N 端球形结构域 (N 结构域)。我们在 FepA 三级结构的不同区域遗传引入了一对 Cys 残基,这些残基有可能形成二硫键。这些包括 N 结构域相邻 β-链上的 Cys 对(内 N)和将 N 结构域的外表面桥接到 C 端跨膜 β-桶内部的 Cys 对(内 N-C)。我们通过 siderophore 营养测试、[Fe]Ent 结合和摄取实验以及荧光诱饵传感器测定来表征这些突变体的 FeEnt 摄取情况。这三种方法一致表明,限制 N 结构域内构象运动的内 N 二硫键阻止了 FeEnt 的摄取,而大多数内 N-C 二硫键并没有阻止 FeEnt 的摄取。这些结果表明,在 FeEnt 转运过程中,FepA 的 N 末端必须发生构象重排。它们也反对 N 结构域作为刚体从通道中脱离,并表明它在 FeEnt 进入周质空间时仍留在跨膜孔内。

相似文献

1
Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.
J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.
2
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
J Gen Physiol. 2014 Jul;144(1):71-80. doi: 10.1085/jgp.201311159.
3
Recognition of ferric catecholates by FepA.
J Bacteriol. 2004 Jun;186(11):3578-89. doi: 10.1128/JB.186.11.3578-3589.2004.
4
Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli.
Biometals. 2007 Jun;20(3-4):263-74. doi: 10.1007/s10534-006-9060-9. Epub 2006 Dec 22.
5
Mutations in the Escherichia coli receptor FepA reveal residues involved in ligand binding and transport.
Mol Microbiol. 2001 Aug;41(3):527-36. doi: 10.1046/j.1365-2958.2001.02473.x.
6
Direct measurements of the outer membrane stage of ferric enterobactin transport: postuptake binding.
J Biol Chem. 2010 Jun 4;285(23):17488-97. doi: 10.1074/jbc.M109.100206. Epub 2010 Mar 24.
8
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.
9
Effect of loop deletions on the binding and transport of ferric enterobactin by FepA.
Mol Microbiol. 1999 Jun;32(6):1153-65. doi: 10.1046/j.1365-2958.1999.01424.x.
10
Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4560-5. doi: 10.1073/pnas.94.9.4560.

引用本文的文献

1
Substrate Uptake by TonB-Dependent Outer Membrane Transporters.
Mol Microbiol. 2024 Dec;122(6):929-947. doi: 10.1111/mmi.15332. Epub 2024 Dec 3.
2
Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu.
Front Microbiol. 2024 Mar 27;15:1355253. doi: 10.3389/fmicb.2024.1355253. eCollection 2024.
3
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.
5
Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
Chem Rev. 2021 May 12;121(9):5193-5239. doi: 10.1021/acs.chemrev.0c01005. Epub 2021 Mar 16.
6
The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux.
Chem Rev. 2021 May 12;121(9):5597-5631. doi: 10.1021/acs.chemrev.0c01137. Epub 2021 Feb 17.

本文引用的文献

3
Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens.
J Biol Chem. 2019 Mar 22;294(12):4682-4692. doi: 10.1074/jbc.RA118.006921. Epub 2019 Jan 24.
4
Fluorescence High-Throughput Screening for Inhibitors of TonB Action.
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00889-16. Print 2017 May 15.
5
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
J Gen Physiol. 2014 Jul;144(1):71-80. doi: 10.1085/jgp.201311159.
6
The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host.
Front Cell Infect Microbiol. 2013 Dec 12;3:95. doi: 10.3389/fcimb.2013.00095. eCollection 2013.
7
Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11553-8. doi: 10.1073/pnas.1304243110. Epub 2013 Jun 24.
8
Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs.
Infect Immun. 2013 Aug;81(8):2697-704. doi: 10.1128/IAI.00418-13. Epub 2013 May 20.
9
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
10
Structural engineering of a phage lysin that targets gram-negative pathogens.
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9857-62. doi: 10.1073/pnas.1203472109. Epub 2012 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验