Lee Sharon Wei Ling, Campisi Marco, Osaki Tatsuya, Possenti Luca, Mattu Clara, Adriani Giulia, Kamm Roger Dale, Chiono Valeria
Singapore-MIT Alliance for Research and Technology (SMART), BioSystems and Micromechanics (BioSyM) IRG, 1 Create Way, #04-13/14, Singapore, 138602, Singapore.
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
Adv Healthc Mater. 2020 Apr;9(7):e1901486. doi: 10.1002/adhm.201901486. Epub 2020 Mar 3.
Polymer nanoparticles (NPs), due to their small size and surface functionalization potential have demonstrated effective drug transport across the blood-brain-barrier (BBB). Currently, the lack of in vitro BBB models that closely recapitulate complex human brain microenvironments contributes to high failure rates of neuropharmaceutical clinical trials. In this work, a previously established microfluidic 3D in vitro human BBB model, formed by the self-assembly of human-induced pluripotent stem cell-derived endothelial cells, primary brain pericytes, and astrocytes in triculture within a 3D fibrin hydrogel is exploited to quantify polymer NP permeability, as a function of size and surface chemistry. Microvasculature are perfused with commercially available 100-400 nm fluorescent polystyrene (PS) NPs, and newly synthesized 100 nm rhodamine-labeled polyurethane (PU) NPs. Confocal images are taken at different timepoints and computationally analyzed to quantify fluorescence intensity inside/outside the microvasculature, to determine NP spatial distribution and permeability in 3D. Results show similar permeability of PS and PU NPs, which increases after surface-functionalization with brain-associated ligand holo-transferrin. Compared to conventional transwell models, the method enables rapid analysis of NP permeability in a physiologically relevant human BBB set-up. Therefore, this work demonstrates a new methodology to preclinically assess NP ability to cross the human BBB.
聚合物纳米颗粒(NPs)因其尺寸小和具有表面功能化潜力,已证明能有效地跨血脑屏障(BBB)转运药物。目前,缺乏能紧密模拟复杂人类脑微环境的体外血脑屏障模型,这导致神经药物临床试验的失败率很高。在这项工作中,利用一种先前建立的微流控三维体外人类血脑屏障模型,该模型由人诱导多能干细胞衍生的内皮细胞、原代脑周细胞和星形胶质细胞在三维纤维蛋白水凝胶中进行三细胞共培养自组装形成,以量化聚合物纳米颗粒的通透性,作为尺寸和表面化学的函数。用市售的100 - 400纳米荧光聚苯乙烯(PS)纳米颗粒和新合成的100纳米罗丹明标记的聚氨酯(PU)纳米颗粒灌注微血管。在不同时间点拍摄共聚焦图像并进行计算分析,以量化微血管内外的荧光强度,确定纳米颗粒在三维空间中的分布和通透性。结果表明,PS和PU纳米颗粒具有相似的通透性,在用与脑相关的配体全转铁蛋白进行表面功能化后,通透性增加。与传统的Transwell模型相比,该方法能够在生理相关的人类血脑屏障设置中快速分析纳米颗粒的通透性。因此,这项工作展示了一种在临床前评估纳米颗粒穿越人类血脑屏障能力的新方法。