Suppr超能文献

萝卜硫素通过激活溶酶体依赖性转录程序来减轻氧化应激。

Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress.

机构信息

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Autophagy. 2021 Apr;17(4):872-887. doi: 10.1080/15548627.2020.1739442. Epub 2020 Mar 15.

Abstract

Oxidative stress underlies a number of pathological conditions, including cancer, neurodegeneration, and aging. Antioxidant-rich foods help maintain cellular redox homeostasis and mitigate oxidative stress, but the underlying mechanisms are not clear. For example, sulforaphane (SFN), an electrophilic compound that is enriched in cruciferous vegetables such as broccoli, is a potent inducer of cellular antioxidant responses. NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2), a transcriptional factor that controls the expression of multiple detoxifying enzymes through antioxidant response elements (AREs), is a proposed target of SFN. is a target gene of TFEB (transcription factor EB), a master regulator of autophagic and lysosomal functions, which we show here to be potently activated by SFN. SFN induces TFEB nuclear translocation via a Ca-dependent but MTOR (mechanistic target of rapamycin kinase)-independent mechanism through a moderate increase in reactive oxygen species (ROS). Activated TFEB then boosts the expression of genes required for autophagosome and lysosome biogenesis, which are known to facilitate the clearance of damaged mitochondria. Notably, TFEB activity is required for SFN-induced protection against both acute oxidant bursts and chronic oxidative stress. Hence, by simultaneously activating macroautophagy/autophagy and detoxifying pathways, natural compound SFN may trigger a self-defense cellular mechanism that can effectively mitigate oxidative stress commonly associated with many metabolic and age-related diseases. ANOVA: analyzes of variance; AREs: antioxidant response elements; Baf-A1: bafilomycin A; BHA: butylhydroxyanisole; CAT: catechin hydrate; CCCP: carbonyl cyanide m- chlorophenylhydrazone; CLEAR: coordinated lysosomal expression and regulation; DCFH-DA: 2',7'-dichlorofluorescin diacetate; FBS: fetal bovine serum; GFP: green fluorescent protein; HMOX1/HO-1: heme oxygenase 1; KD: knockdown; KEAP1: kelch like ECH associated protein 1; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MCOLN1/TRPML1: mucolipin 1; ML-SA1: mucolipin-specific synthetic agonist 1; ML-SI3: mucolipin-specific synthetic inhibitor 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NFE2L2/NRF2: nuclear factor: erythroid 2 like 2; NPC: Niemann-Pick type C; PBS: phosphate-buffered saline; PPP2/PP2A: protein phosphatase 2; Q-PCR: real time polymerase chain reaction; ROS: reactive oxygen species; RPS6KB1/S6K1/p70S6K: ribosomal protein S6 kinase B1; SFN: sulforaphane; TFEB: transcription factor EB; WT, wild-type.

摘要

氧化应激是许多病理状况的基础,包括癌症、神经退行性疾病和衰老。富含抗氧化剂的食物有助于维持细胞氧化还原平衡并减轻氧化应激,但潜在机制尚不清楚。例如,西兰花等十字花科蔬菜中富含的具有反应活性的化合物萝卜硫素 (SFN),是细胞抗氧化反应的有效诱导剂。NFE2L2/NRF2(红细胞生成 2 样核因子)是一种转录因子,通过抗氧化反应元件 (ARE) 控制多种解毒酶的表达,被认为是 SFN 的靶点。TFEB(转录因子 EB)是自噬和溶酶体功能的主要调节因子,我们在这里显示它可以被 SFN 强烈激活,是 TFEB 是 TFEB 的靶基因。SFN 通过 Ca 依赖性但 MTOR(雷帕霉素靶蛋白激酶)非依赖性机制诱导 TFEB 核易位,该机制通过适度增加活性氧 (ROS) 来实现。激活的 TFEB 然后增强自噬体和溶酶体发生所需基因的表达,这已知有助于清除受损的线粒体。值得注意的是,SFN 诱导的保护作用需要 TFEB 活性,以抵抗急性氧化剂爆发和慢性氧化应激。因此,通过同时激活巨自噬/自噬和解毒途径,天然化合物 SFN 可能触发一种有效的自我防御细胞机制,可有效减轻与许多代谢和与年龄相关的疾病相关的氧化应激。ANOVA:方差分析;AREs:抗氧化反应元件;Baf-A1:巴弗霉素 A;BHA:丁基羟基茴香醚;CAT:儿茶素水合物;CCCP:羰基氰化物 m-氯苯腙;CLEAR:协调溶酶体表达和调节;DCFH-DA:2',7'-二氯荧光素二乙酸酯;FBS:胎牛血清;GFP:绿色荧光蛋白;HMOX1/HO-1:血红素加氧酶 1;KD:敲低;KEAP1:Kelch 样 ECH 相关蛋白 1;KO:敲除;LAMP1:溶酶体相关膜蛋白 1;MCOLN1/TRPML1:粘蛋白 1;ML-SA1:粘蛋白特异性合成激动剂 1;ML-SI3:粘蛋白特异性合成抑制剂 3;MTOR:雷帕霉素靶蛋白激酶;MTORC1:雷帕霉素靶蛋白激酶复合物 1;NAC:N-乙酰半胱氨酸;NFE2L2/NRF2:核因子:红细胞生成 2 样 2;NPC:尼曼-匹克 C 型;PBS:磷酸盐缓冲盐水;PPP2/PP2A:蛋白磷酸酶 2;Q-PCR:实时聚合酶链反应;ROS:活性氧;RPS6KB1/S6K1/p70S6K:核糖体蛋白 S6 激酶 B1;SFN:萝卜硫素;TFEB:转录因子 EB;WT,野生型。

相似文献

1
Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress.
Autophagy. 2021 Apr;17(4):872-887. doi: 10.1080/15548627.2020.1739442. Epub 2020 Mar 15.
4
Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration.
Autophagy. 2019 Apr;15(4):631-651. doi: 10.1080/15548627.2018.1535292. Epub 2018 Nov 5.
5
SMURF1 controls the PPP3/calcineurin complex and TFEB at a regulatory node for lysosomal biogenesis.
Autophagy. 2024 Apr;20(4):735-751. doi: 10.1080/15548627.2023.2267413. Epub 2023 Nov 1.
7
Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis.
Autophagy. 2019 Sep;15(9):1572-1591. doi: 10.1080/15548627.2019.1586256. Epub 2019 Mar 27.
8
TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis.
Autophagy. 2018;14(9):1574-1585. doi: 10.1080/15548627.2018.1463120. Epub 2018 Aug 21.
9
Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis.
Autophagy. 2019 Nov;15(11):1954-1969. doi: 10.1080/15548627.2019.1596486. Epub 2019 Mar 30.
10
Full-coverage regulations of autophagy by ROS: from induction to maturation.
Autophagy. 2022 Jun;18(6):1240-1255. doi: 10.1080/15548627.2021.1984656. Epub 2021 Oct 18.

引用本文的文献

1
C5a-Induced Autophagy Dysfunction Promotes Choroidal Neovascularization Through the ROS-Inflammatory Pathway.
Invest Ophthalmol Vis Sci. 2025 Jul 1;66(9):44. doi: 10.1167/iovs.66.9.44.
2
Activation of LAMP1-mediated lipophagy by sulforaphane inhibits cellular senescence and intervertebral disc degeneration.
J Orthop Translat. 2025 Jun 2;53:12-25. doi: 10.1016/j.jot.2025.05.010. eCollection 2025 Jul.
3
Targeting Lysosomal Dysfunction and Oxidative Stress in Age-Related Macular Degeneration.
Antioxidants (Basel). 2025 May 16;14(5):596. doi: 10.3390/antiox14050596.
4
The antioxidant stress effect of granulin precursor in vitiligo.
Sci Rep. 2025 May 25;15(1):18189. doi: 10.1038/s41598-025-03486-7.
5
Nrf2: A key regulator in chemoradiotherapy resistance of osteosarcoma.
Genes Dis. 2024 May 22;12(4):101335. doi: 10.1016/j.gendis.2024.101335. eCollection 2025 Jul.
8
Plin5: A potential therapeutic target for type 2 diabetes mellitus.
Diabetol Metab Syndr. 2025 Apr 2;17(1):114. doi: 10.1186/s13098-025-01680-1.
9
Knowledge mapping of autophagy in chronic obstructive pulmonary disease from 2004 to 2024: a bibliometric analysis.
Front Med (Lausanne). 2025 Feb 24;12:1514686. doi: 10.3389/fmed.2025.1514686. eCollection 2025.

本文引用的文献

1
Lysosomal Ion Channels as Decoders of Cellular Signals.
Trends Biochem Sci. 2019 Feb;44(2):110-124. doi: 10.1016/j.tibs.2018.10.006. Epub 2018 Nov 10.
3
Protein phosphatase 2A stimulates activation of TFEB and TFE3 transcription factors in response to oxidative stress.
J Biol Chem. 2018 Aug 10;293(32):12525-12534. doi: 10.1074/jbc.RA118.003471. Epub 2018 Jun 26.
4
The complex relationship between TFEB transcription factor phosphorylation and subcellular localization.
EMBO J. 2018 Jun 1;37(11). doi: 10.15252/embj.201798804. Epub 2018 May 15.
5
The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis.
Physiol Rev. 2018 Jul 1;98(3):1169-1203. doi: 10.1152/physrev.00023.2017.
6
KEAP1 and Done? Targeting the NRF2 Pathway with Sulforaphane.
Trends Food Sci Technol. 2017 Nov;69(Pt B):257-269. doi: 10.1016/j.tifs.2017.02.002. Epub 2017 Feb 16.
7
The Role of Oxidative Stress, Mitochondrial Function, and Autophagy in Diabetic Polyneuropathy.
J Diabetes Res. 2017;2017:1673081. doi: 10.1155/2017/1673081. Epub 2017 Oct 24.
10
Oxidative Stress.
Annu Rev Biochem. 2017 Jun 20;86:715-748. doi: 10.1146/annurev-biochem-061516-045037. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验