Suppr超能文献

巴黎诱导的线粒体生物发生缺陷在 parkin 或 PINK1 缺乏的情况下驱动多巴胺神经元丢失。

PARIS induced defects in mitochondrial biogenesis drive dopamine neuron loss under conditions of parkin or PINK1 deficiency.

机构信息

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 North Broadway, Suite 731, Baltimore, MD, 21205, USA.

Departments of Neurology, Iowa City, USA.

出版信息

Mol Neurodegener. 2020 Mar 5;15(1):17. doi: 10.1186/s13024-020-00363-x.

Abstract

BACKGROUND

Mutations in PINK1 and parkin cause autosomal recessive Parkinson's disease (PD). Evidence placing PINK1 and parkin in common pathways regulating multiple aspects of mitochondrial quality control is burgeoning. However, compelling evidence to causatively link specific PINK1/parkin dependent mitochondrial pathways to dopamine neuron degeneration in PD is lacking. Although PINK1 and parkin are known to regulate mitophagy, emerging data suggest that defects in mitophagy are unlikely to be of pathological relevance. Mitochondrial functions of PINK1 and parkin are also tied to their proteasomal regulation of specific substrates. In this study, we examined how PINK1/parkin mediated regulation of the pathogenic substrate PARIS impacts dopaminergic mitochondrial network homeostasis and neuronal survival in Drosophila.

METHODS

The UAS-Gal4 system was employed for cell-type specific expression of the various transgenes. Effects on dopamine neuronal survival and function were assessed by anti-TH immunostaining and negative geotaxis assays. Mitochondrial effects were probed by quantitative analysis of mito-GFP labeled dopaminergic mitochondria, assessment of mitochondrial abundance in dopamine neurons isolated by Fluorescence Activated Cell Sorting (FACS) and qRT-PCR analysis of dopaminergic factors that promote mitochondrial biogenesis. Statistical analyses employed two-tailed Student's T-test, one-way or two-way ANOVA as required and data considered significant when P < 0.05.

RESULTS

We show that defects in mitochondrial biogenesis drive adult onset progressive loss of dopamine neurons and motor deficits in Drosophila models of PINK1 or parkin insufficiency. Such defects result from PARIS dependent repression of dopaminergic PGC-1α and its downstream transcription factors NRF1 and TFAM that cooperatively promote mitochondrial biogenesis. Dopaminergic accumulation of human or Drosophila PARIS recapitulates these neurodegenerative phenotypes that are effectively reversed by PINK1, parkin or PGC-1α overexpression in vivo. To our knowledge, PARIS is the only co-substrate of PINK1 and parkin to specifically accumulate in the DA neurons and cause neurodegeneration and locomotor defects stemming from disrupted dopamine signaling.

CONCLUSIONS

Our findings identify a highly conserved role for PINK1 and parkin in regulating mitochondrial biogenesis and promoting mitochondrial health via the PARIS/ PGC-1α axis. The Drosophila models described here effectively recapitulate the cardinal PD phenotypes and thus will facilitate identification of novel regulators of mitochondrial biogenesis for physiologically relevant therapeutic interventions.

摘要

背景

PINK1 和 parkin 的突变会导致常染色体隐性帕金森病(PD)。越来越多的证据表明,PINK1 和 parkin 位于调节线粒体质量控制多个方面的共同途径中。然而,将特定的 PINK1/parkin 依赖的线粒体途径与 PD 中的多巴胺神经元变性联系起来的令人信服的证据仍然缺乏。尽管已知 PINK1 和 parkin 调节线粒体自噬,但新兴数据表明,线粒体自噬的缺陷不太可能具有病理相关性。PINK1 和 parkin 的线粒体功能也与其对特定底物的蛋白酶体调节有关。在这项研究中,我们研究了 PINK1/parkin 介导的致病底物 PARIS 的调节如何影响果蝇多巴胺能神经元中线粒体网络的动态平衡和神经元的存活。

方法

采用 UAS-Gal4 系统进行各种转基因的细胞类型特异性表达。通过抗 TH 免疫染色和负趋地性测定评估多巴胺神经元的存活和功能。通过定量分析 mito-GFP 标记的多巴胺能线粒体、通过荧光激活细胞分选(FACS)分离多巴胺神经元后的线粒体丰度评估以及通过 qRT-PCR 分析促进线粒体生物发生的多巴胺能因子来探测线粒体的影响。统计分析采用双尾学生 t 检验、单因素或双因素方差分析,当 P 值小于 0.05 时,数据被认为具有统计学意义。

结果

我们表明,线粒体生物发生的缺陷导致 PINK1 或 parkin 不足的果蝇模型中成年多巴胺神经元的进行性丧失和运动缺陷。这种缺陷是由 PARIS 依赖性抑制多巴胺能 PGC-1α 及其下游转录因子 NRF1 和 TFAM 引起的,这些转录因子共同促进线粒体生物发生。人类或果蝇 PARIS 的多巴胺能积累再现了这些神经退行性表型,这些表型可以通过体内过表达 PINK1、parkin 或 PGC-1α 有效逆转。据我们所知,PARIS 是唯一一种特异性积累在 DA 神经元中的 PINK1 和 parkin 的共同底物,可导致多巴胺信号转导中断引起的神经变性和运动缺陷。

结论

我们的发现确定了 PINK1 和 parkin 在调节线粒体生物发生和通过 PARIS/PGC-1α 轴促进线粒体健康方面的高度保守作用。这里描述的果蝇模型有效地再现了主要的 PD 表型,因此将有助于确定新的线粒体生物发生调节剂,用于具有生理相关性的治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8569/7057660/9d992c5268df/13024_2020_363_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验