Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.
Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA.
Glia. 2020 Oct;68(10):1968-1986. doi: 10.1002/glia.23816. Epub 2020 Mar 11.
Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid-derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid-derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid-derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness.
脑内感染和炎症会引起神经元连接和功能的变化。细胞内原生动物寄生虫刚地弓形虫是一种感染大脑的病原体,可引起脑炎和癫痫发作。这种寄生虫的持续感染也与行为改变和增加患精神疾病(包括精神分裂症)的风险有关。目前来自人类和小鼠模型的研究证据表明,癫痫发作和精神分裂症均源自抑制性突触的丧失或功能障碍。与此一致,我们最近报道称,持续性刚地弓形虫感染会改变谷氨酸脱羧酶 67(GAD67)的分布,GAD67 是催化抑制性突触中 GABA 合成的酶。这些变化可能反映了抑制性神经元中突触前机制的重新分布,或者抑制性神经末梢的丧失。为了直接评估后一种可能性,我们采用了连续块面扫描电子显微镜(SBFSEM),并在寄生虫感染后定量分析了新皮质和海马中的抑制性体周突触。持续性感染不仅导致体周突触明显丧失,还诱导髓样细胞包裹神经元胞体。免疫组织化学、遗传和超微结构分析显示,这些髓样细胞包括激活的小胶质细胞。最后,超微结构分析确定了包裹体周神经末梢的髓样细胞,表明它们可能主动置换或吞噬突触成分。因此,这些结果表明,激活的小胶质细胞可能导致寄生虫感染后体周抑制性突触丧失,并为持续的刚地弓形虫感染如何导致癫痫发作和精神疾病提供了新的机制。