Suppr超能文献

用于超级电容器的还原氧化石墨烯/芳纶纳米纤维电极中纳米结构与多孔介质扩散模型的比较

Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene Oxide/Aramid Nanofiber Electrodes for Supercapacitors.

作者信息

Aderyani Sarah, Shah Smit A, Masoudi Ali, Green Micah J, Lutkenhaus Jodie L, Ardebili Haleh

出版信息

ACS Nano. 2020 May 26;14(5):5314-5323. doi: 10.1021/acsnano.9b07116. Epub 2020 May 6.

Abstract

Structural electrodes made of reduced graphene oxide (rGO) and aramid nanofiber (ANF) are promising candidates for future structural supercapacitors. In this study, the influence of nanoarchitecture on the effective ionic diffusivity, porosity, and tortuosity in rGO/ANF structural electrodes is investigated through multiphysics computational modeling. Two specific nanoarchitectures, namely, "house of cards" and "layered" structures, are evaluated. The results obtained from nanoarchitecture computational modeling are compared to the porous media approach and show that the widely used porous electrode theories, such as Bruggeman or Millington-Quirk relations, overestimate the effective diffusion coefficient. Also, the results from nanoarchitecture modeling are validated with experimental measurements obtained from electrochemical impedance spectroscopy and cyclic voltammetry. The effective diffusion coefficients obtained from nanoarchitectural modeling show better agreement with experimental measurements. Evaluation of microscopic properties such as porosity, tortuosity, and effective diffusivity through both experiment and simulation is essential to understand the material behavior and to improve its performance.

摘要

由还原氧化石墨烯(rGO)和芳纶纳米纤维(ANF)制成的结构电极是未来结构超级电容器的有前途的候选材料。在本研究中,通过多物理场计算建模研究了纳米结构对rGO/ANF结构电极中有效离子扩散率、孔隙率和曲折度的影响。评估了两种特定的纳米结构,即“纸牌屋”结构和“分层”结构。将纳米结构计算建模得到的结果与多孔介质方法进行了比较,结果表明,广泛使用的多孔电极理论,如布鲁格曼或米林顿-奎克关系,高估了有效扩散系数。此外,纳米结构建模的结果通过电化学阻抗谱和循环伏安法获得的实验测量进行了验证。从纳米结构建模获得的有效扩散系数与实验测量结果显示出更好的一致性。通过实验和模拟评估微观性质,如孔隙率、曲折度和有效扩散率,对于理解材料行为和提高其性能至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验