Suppr超能文献

在单细胞水平构建人类细胞图谱。

Construction of a human cell landscape at single-cell level.

机构信息

Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.

Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Nature. 2020 May;581(7808):303-309. doi: 10.1038/s41586-020-2157-4. Epub 2020 Mar 25.

Abstract

Single-cell analysis is a valuable tool for dissecting cellular heterogeneity in complex systems. However, a comprehensive single-cell atlas has not been achieved for humans. Here we use single-cell mRNA sequencing to determine the cell-type composition of all major human organs and construct a scheme for the human cell landscape (HCL). We have uncovered a single-cell hierarchy for many tissues that have not been well characterized. We established a 'single-cell HCL analysis' pipeline that helps to define human cell identity. Finally, we performed a single-cell comparative analysis of landscapes from human and mouse to identify conserved genetic networks. We found that stem and progenitor cells exhibit strong transcriptomic stochasticity, whereas differentiated cells are more distinct. Our results provide a useful resource for the study of human biology.

摘要

单细胞分析是剖析复杂系统中细胞异质性的一种有效工具。然而,人类尚未建立全面的单细胞图谱。在此,我们利用单细胞 mRNA 测序技术,确定了所有主要人体器官的细胞类型组成,并构建了人类细胞图谱(HCL)方案。我们揭示了许多组织的单细胞层次结构,这些组织此前尚未得到很好的描述。我们建立了一个“单细胞 HCL 分析”管道,有助于定义人类细胞的身份。最后,我们对来自人类和小鼠的图谱进行单细胞比较分析,以鉴定保守的遗传网络。我们发现,干细胞和祖细胞表现出强烈的转录组随机性,而分化细胞则更为独特。我们的研究结果为人类生物学的研究提供了有用的资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验