Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
Acc Chem Res. 2020 Apr 21;53(4):833-851. doi: 10.1021/acs.accounts.9b00621. Epub 2020 Mar 31.
The functionalization of unactivated carbon-hydrogen bonds is a transformative strategy for the rapid construction of molecular complexity given the ubiquitous presence of C-H bonds in organic molecules. It represents a powerful tool for accelerating the synthesis of natural products and bioactive compounds while reducing the environmental and economic costs of synthesis. At the same time, the ubiquity and strength of C-H bonds also present major challenges toward the realization of transformations that are both highly selective and efficient. The development of practical C-H functionalization reactions has thus remained a compelling yet elusive goal in organic chemistry for over a century.Specifically, the capability to form useful new C-C, C-N, C-O, and C-X bonds via direct C-H functionalization would have wide-ranging impacts in organic synthesis. Palladium is especially attractive as a catalyst for such C-H functionalizations because of the diverse reactivity of intermediate palladium-carbon bonds. Early efforts using cyclopalladation with Pd(OAc) and related salts led to the development of many Pd-catalyzed C-H functionalization reactions. However, Pd(OAc) and other simple Pd salts perform only racemic transformations, which prompted a long search for effective chiral catalysts dating back to the 1970s. Pd salts also have low reactivity with synthetically useful substrates. To address these issues, effective and reliable ligands capable of accelerating and improving the selectivity of Pd-catalyzed C-H functionalizations are needed.In this Account, we highlight the discovery and development of bifunctional mono-N-protected amino acid (MPAA) ligands, which make great strides toward addressing these two challenges. MPAAs enable numerous Pd(II)-catalyzed C(sp)-H and C(sp)-H functionalization reactions of synthetically relevant substrates under operationally practical conditions with excellent stereoselectivity when applicable. Mechanistic studies indicate that MPAAs operate as unique bifunctional ligands for C-H activation in which both the carboxylate and amide are coordinated to Pd. The -acyl group plays an active role in the C-H cleavage step, greatly accelerating C-H activation. The rigid MPAA chelation also results in a predictable transfer of chiral information from a single chiral center on the ligand to the substrate and permits the development of a rational stereomodel to predict the stereochemical outcome of enantioselective reactions.We also describe the application of MPAA-enabled C-H functionalization in total synthesis and provide an outlook for future development in this area. We anticipate that MPAAs and related next-generation ligands will continue to stimulate development in the field of Pd-catalyzed C-H functionalization.
未活化的碳-氢键的功能化是一种变革性的策略,可以快速构建分子复杂性,因为有机分子中普遍存在 C-H 键。它代表了一种强大的工具,可以加速天然产物和生物活性化合物的合成,同时降低合成的环境和经济成本。同时,C-H 键的普遍性和强度也对实现高度选择性和高效性的转化提出了重大挑战。因此,在有机化学中,开发实用的 C-H 官能化反应一个多世纪以来一直是一个令人信服但难以实现的目标。
具体来说,通过直接 C-H 官能化形成有用的新 C-C、C-N、C-O 和 C-X 键的能力将在有机合成中产生广泛的影响。钯因其中间钯-碳键的多种反应性而特别适合作为此类 C-H 官能化的催化剂。早期使用 Pd(OAc)和相关盐的环钯化的努力导致了许多 Pd 催化的 C-H 官能化反应的发展。然而,Pd(OAc)和其他简单的 Pd 盐仅进行外消旋转化,这促使人们自 20 世纪 70 年代以来一直在寻找有效的手性催化剂。Pd 盐与合成有用的底物的反应性也较低。为了解决这些问题,需要有效的和可靠的配体,这些配体能加速和改善 Pd 催化的 C-H 官能化的选择性。
在本报告中,我们重点介绍双功能单 N-保护氨基酸(MPAA)配体的发现和发展,这些配体在解决这两个挑战方面取得了重大进展。MPAAs 使许多 Pd(II)-催化的具有合成相关性的底物的 C(sp)-H 和 C(sp)-H 官能化反应在可操作的实际条件下进行,并且在适用的情况下具有极好的立体选择性。机理研究表明,MPAAs 作为独特的 C-H 活化双功能配体起作用,其中羧酸酯和酰胺都与 Pd 配位。-酰基基团在 C-H 断裂步骤中起积极作用,极大地加速了 C-H 活化。刚性的 MPAA 螯合也导致手性信息从配体上的单个手性中心转移到底物上,并允许开发合理的立体模型来预测对映选择性反应的立体化学结果。
我们还描述了在全合成中使用 MPAA 实现的 C-H 官能化的应用,并对该领域的未来发展进行了展望。我们预计,MPAA 和相关的下一代配体将继续刺激 Pd 催化的 C-H 官能化领域的发展。