Suppr超能文献

在早发性张力亢进动物模型中膈神经运动神经元丢失。

Phrenic motor neuron loss in an animal model of early onset hypertonia.

机构信息

Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota.

Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.

出版信息

J Neurophysiol. 2020 May 1;123(5):1682-1690. doi: 10.1152/jn.00026.2020. Epub 2020 Apr 1.

Abstract

Phrenic motor neuron (PhMN) development in early onset hypertonia is poorly understood. Respiratory disorders are one of the leading causes of morbidity and mortality in individuals with early onset hypertonia, such as cerebral palsy (CP), but they are largely overshadowed by a focus on physical function in this condition. Furthermore, while the brain is the focus of CP research, motor neurons, via the motor unit and neurotransmitter signaling, are the targets in clinical interventions for hypertonia. Furthermore, critical periods of spinal cord and motor unit development also coincide with the timing that the supposed brain injury occurs in CP. Using an animal model of early-onset spasticity ( mouse [B6.Cg-Glrbspa/J] with a glycine receptor mutation), we hypothesized that removal of effective glycinergic neurotransmitter inputs to PhMNs during development will result in fewer PhMNs and reduced PhMN somal size at maturity. Adult (Glrb-/-), and wild-type (Glrb+/+) mice underwent unilateral retrograde labeling of PhMNs via phrenic nerve dip in tetramethylrhodamine. After three days, mice were euthanized, perfused with 4% paraformaldehyde, and the spinal cord excised and processed for confocal imaging. mice had ~30% fewer PhMNs ( = 0.005), disproportionately affecting larger PhMNs. Additionally, a ~22% reduction in PhMN somal surface area ( = 0.019), an 18% increase in primary dendrites ( < 0.0001), and 24% decrease in dendritic surface area ( = 0.014) were observed. Thus, there are fewer larger PhMNs in mice. Fewer and smaller PhMNs may contribute to impaired diaphragm neuromotor control and contribute to respiratory morbidity and mortality in conditions of early onset hypertonia. Phrenic motor neuron (PhMN) development in early-onset hypertonia is poorly understood. Yet, respiratory disorders are a common cause of morbidity and mortality. In mice, an animal model of early-onset hypertonia, we found ~30% fewer PhMNs, compared with controls. This PhMN loss disproportionately affected larger PhMNs. Thus, the number and heterogeneity of the PhMN pool are decreased in mice, likely contributing to the hypertonia, impaired neuromotor control, and respiratory disorders.

摘要

早发性张力亢进中的膈神经运动神经元 (PhMN) 发育知之甚少。呼吸障碍是早发性张力亢进患者(如脑瘫)发病率和死亡率的主要原因之一,但在这种情况下,人们主要关注的是身体功能,而在很大程度上忽略了呼吸障碍。此外,虽然大脑是脑瘫研究的重点,但运动神经元通过运动单位和神经递质信号传递,是针对张力亢进的临床干预的目标。此外,脊髓和运动单位发育的关键时期也与假定的脑瘫中脑损伤发生的时间相吻合。我们使用早发性痉挛(具有甘氨酸受体突变的 B6.Cg-Glrbspa/J 小鼠)的动物模型,假设在发育过程中去除 PhMN 中有效的甘氨酸能神经递质输入,将导致 PhMN 数量减少和成熟时 PhMN 体表面积减小。成年(Glrb-/-)和野生型(Glrb+/+)小鼠通过膈神经浸在四甲基罗丹明中进行单侧逆行标记 PhMN。三天后,处死小鼠,用 4%多聚甲醛灌注,取出脊髓并进行共聚焦成像。Glrb-/- 小鼠的 PhMN 数量减少了约 30%( = 0.005),不成比例地影响了较大的 PhMN。此外,PhMN 体表面积减少了约 22%( = 0.019),初级树突增加了 18%(<0.0001),树突表面积减少了 24%( = 0.014)。因此,Glrb-/- 小鼠中的 PhMN 数量较少。更少和更小的 PhMN 可能导致膈肌神经运动控制受损,并导致早发性张力亢进中的呼吸发病率和死亡率增加。早发性张力亢进中的膈神经运动神经元 (PhMN) 发育知之甚少。然而,呼吸障碍是常见的发病率和死亡率的原因。在早发性张力亢进的动物模型 Glrb-/- 小鼠中,我们发现与对照组相比,PhMN 减少了约 30%。这种 PhMN 损失不成比例地影响了较大的 PhMN。因此,PhMN 池的数量和异质性在 Glrb-/- 小鼠中减少,可能导致张力亢进、神经运动控制受损和呼吸障碍。

相似文献

1
Phrenic motor neuron loss in an animal model of early onset hypertonia.
J Neurophysiol. 2020 May 1;123(5):1682-1690. doi: 10.1152/jn.00026.2020. Epub 2020 Apr 1.
2
Differences in lumbar motor neuron pruning in an animal model of early onset spasticity.
J Neurophysiol. 2018 Aug 1;120(2):601-609. doi: 10.1152/jn.00186.2018. Epub 2018 May 2.
4
Phrenic motor neuron loss in aged rats.
J Neurophysiol. 2018 May 1;119(5):1852-1862. doi: 10.1152/jn.00868.2017. Epub 2018 Feb 7.
5
Cervical spinal hemisection alters phrenic motor neuron glutamatergic mRNA receptor expression.
Exp Neurol. 2022 Jul;353:114030. doi: 10.1016/j.expneurol.2022.114030. Epub 2022 Mar 2.
6
Diaphragm neuromuscular transmission failure in a mouse model of an early-onset neuromotor disorder.
J Appl Physiol (1985). 2021 Mar 1;130(3):708-720. doi: 10.1152/japplphysiol.00864.2020. Epub 2020 Dec 31.
7
Size-dependent differences in mitochondrial volume density in phrenic motor neurons.
J Appl Physiol (1985). 2023 Jun 1;134(6):1332-1340. doi: 10.1152/japplphysiol.00021.2023. Epub 2023 Apr 6.
8
Impaired neuromuscular transmission of the tibialis anterior in a rodent model of hypertonia.
J Neurophysiol. 2020 May 1;123(5):1864-1869. doi: 10.1152/jn.00095.2020. Epub 2020 Apr 15.
9
Glutamatergic input varies with phrenic motor neuron size.
J Neurophysiol. 2019 Oct 1;122(4):1518-1529. doi: 10.1152/jn.00430.2019. Epub 2019 Aug 7.
10
Postnatal survival of phrenic motor neurons is promoted by BDNF/TrkB.FL signaling.
J Appl Physiol (1985). 2024 May 1;136(5):1113-1121. doi: 10.1152/japplphysiol.00911.2023. Epub 2024 Mar 21.

引用本文的文献

1
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
2
Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus.
Front Cell Neurosci. 2024 Jun 12;18:1409974. doi: 10.3389/fncel.2024.1409974. eCollection 2024.
3
Postnatal survival of phrenic motor neurons is promoted by BDNF/TrkB.FL signaling.
J Appl Physiol (1985). 2024 May 1;136(5):1113-1121. doi: 10.1152/japplphysiol.00911.2023. Epub 2024 Mar 21.
4
Inhibitory Synaptic Influences on Developmental Motor Disorders.
Int J Mol Sci. 2023 Apr 9;24(8):6962. doi: 10.3390/ijms24086962.
5
Size-dependent differences in mitochondrial volume density in phrenic motor neurons.
J Appl Physiol (1985). 2023 Jun 1;134(6):1332-1340. doi: 10.1152/japplphysiol.00021.2023. Epub 2023 Apr 6.
6
Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size.
Mol Cell Neurosci. 2023 Jun;125:103847. doi: 10.1016/j.mcn.2023.103847. Epub 2023 Mar 21.
7
Is baclofen the least worst option for spasticity management in children?
J Pediatr Rehabil Med. 2023;16(1):11-17. doi: 10.3233/PRM-230001.
10
Targeting drug or gene delivery to the phrenic motoneuron pool.
J Neurophysiol. 2023 Jan 1;129(1):144-158. doi: 10.1152/jn.00432.2022. Epub 2022 Nov 23.

本文引用的文献

1
Size-Dependent Vulnerability of Lumbar Motor Neuron Dendritic Degeneration in SOD1 Mice.
Anat Rec (Hoboken). 2020 May;303(5):1455-1471. doi: 10.1002/ar.24255. Epub 2019 Sep 30.
2
Glutamatergic input varies with phrenic motor neuron size.
J Neurophysiol. 2019 Oct 1;122(4):1518-1529. doi: 10.1152/jn.00430.2019. Epub 2019 Aug 7.
3
A Critical Evaluation of Current Concepts in Cerebral Palsy.
Physiology (Bethesda). 2019 May 1;34(3):216-229. doi: 10.1152/physiol.00054.2018.
4
Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals.
Compr Physiol. 2019 Mar 14;9(2):715-766. doi: 10.1002/cphy.c180012.
5
Phrenic motoneuron structural plasticity across models of diaphragm muscle paralysis.
J Comp Neurol. 2018 Dec 15;526(18):2973-2983. doi: 10.1002/cne.24503. Epub 2018 Nov 8.
6
Differences in lumbar motor neuron pruning in an animal model of early onset spasticity.
J Neurophysiol. 2018 Aug 1;120(2):601-609. doi: 10.1152/jn.00186.2018. Epub 2018 May 2.
7
Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons in Mice.
J Vis Exp. 2018 Feb 22(132):56758. doi: 10.3791/56758.
8
Phrenic motor neuron loss in aged rats.
J Neurophysiol. 2018 May 1;119(5):1852-1862. doi: 10.1152/jn.00868.2017. Epub 2018 Feb 7.
9
Breathing: Motor Control of Diaphragm Muscle.
Physiology (Bethesda). 2018 Mar 1;33(2):113-126. doi: 10.1152/physiol.00002.2018.
10
Motor Areas Show Altered Dendritic Structure in an Amyotrophic Lateral Sclerosis Mouse Model.
Front Neurosci. 2017 Nov 1;11:609. doi: 10.3389/fnins.2017.00609. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验