Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China.
Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
Nature. 2020 Apr;580(7801):147-150. doi: 10.1038/s41586-020-2105-3. Epub 2020 Mar 11.
Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing. Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name 'RNA elements for subcellular localization by sequencing' (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5' splice sites and depleted of 3' splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.
长非编码 RNA(lncRNA)和启动子或增强子相关的不稳定转录本优先定位到染色质上,其中一些调节染色质结构、转录和 RNA 加工。虽然已经鉴定出几个负责核定位的 RNA 序列,例如 lncRNA Xist 中的重复序列和长 RNA 中的 Alu 样元件,但 lncRNA 作为一类如何富集在染色质上仍不清楚。在这里,我们描述了一种随机、突变偶联、高通量的方法,我们称之为“通过测序进行亚细胞定位的 RNA 元件”(mutREL-seq)。使用这种方法,我们发现了一个识别 U1 小核核糖核蛋白(snRNP)的 RNA 基序,该基序对于报告 RNA 定位到染色质是必不可少的。在整个基因组中,染色质结合的 lncRNA 富含 5'剪接位点,缺乏 3'剪接位点,并且与细胞质定位的信使 RNA 相比,U1 snRNA 结合水平较高。U1 snRNA 或 U1 snRNP 蛋白成分 SNRNP70 的急性耗竭显著降低了数百个 lncRNA 和不稳定转录本与染色质的结合,而不改变细胞内的整体转录速率。此外,SNRNP70 的快速降解降低了新生和多聚腺苷酸化 lncRNA 转录本向染色质的定位,并破坏了 lncRNA Malat1 的核和全基因组定位。此外,U1 snRNP 与转录活跃的 RNA 聚合酶 II 相互作用。这些结果表明,U1 snRNP 广泛地作用于染色质,以依赖转录的方式将 lncRNA 连接和动员到染色质上。我们的发现揭示了 U1 snRNP 超越前体 mRNA 加工的先前未知作用,并为 lncRNA 如何被招募到调节位点以执行与染色质相关的功能提供了分子见解。