Suppr超能文献

铑催化氧化芳烃烯基化反应的研究进展

Advances in Rhodium-Catalyzed Oxidative Arene Alkenylation.

作者信息

Zhu Weihao, Gunnoe T Brent

机构信息

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.

出版信息

Acc Chem Res. 2020 Apr 21;53(4):920-936. doi: 10.1021/acs.accounts.0c00036. Epub 2020 Apr 2.

Abstract

ConspectusAlkyl and alkenyl arenes are of substantial value in both large-scale and fine chemical processes. Billions of pounds of alkyl and alkenyl arenes are produced annually. Historically, the dominant method for synthesis of alkyl arenes is acid-catalyzed arene alkylation, and alkenyl arenes are often synthesized in a subsequent dehydrogenation step. But these methods have limitations that result from the catalytic mechanism including (1) common polyalkylation, which requires an energy intensive transalkylation process, (2) quantitative selectivity for Markovnikov products for arene alkylation using α-olefins, (3) for substituted arenes, regioselectivity that is dictated by the electronic character of the arene substituents, (4) inability to form alkenyl arenes in a single process, and (5) commonly observed slow reactivity with electron-deficient arenes. Transition-metal-catalyzed aryl-carbon coupling reactions can produce alkyl or alkenyl arenes from aryl halides. However, these reactions often generate halogenated waste and typically require a stoichiometric amount of metal-containing transmetalation reagent. Transition-metal-catalyzed arene alkylation or alkenylation that involves arene C-H activation and olefin insertion into metal-aryl bonds provides a potential alternative method to prepare alkyl or alkenylation arenes. Such reactions can circumvent carbocationic intermediates and, as a result, can overcome some of the limitations mentioned above. In particular, controlling the regioselectivity of the insertion of α-olefins into metal-aryl bonds provides a strategy to selectively synthesize anti-Markovnikov products. But, previously reported catalysts often show limited longevity and low selectivity for anti-Markovnikov products.In this Account, we present recent developments in single-step arene alkenylation using Rh catalyst precursors. The reactions are successful for unactivated hydrocarbons and exhibit unique selectivity. The catalytic production of alkenyl arenes operates via Rh-mediated aromatic C-H activation, which likely occurs by a concerted metalation-deprotonation mechanism, olefin insertion into a Rh-aryl bond, β-hydride elimination from the resulting Rh-hydrocarbon product, and net dissociation of alkenyl arene with formation of a Rh hydride. Reaction of the Rh hydride with Cu(II) oxidant completes the catalytic cycle. Although Rh nanoparticles can be formed under some conditions, mechanistic studies have revealed that soluble Rh species are likely responsible for the catalysis. These Rh catalyst precursors achieve high turnovers with >10,000 catalytic turnovers observed in some cases. Under anaerobic conditions, Cu(II) carboxylates are used as the oxidant. In some cases, aerobic recycling of Cu(II) oxidant has been demonstrated. Hence, the Rh arene alkenylation catalysis bears some similarities to Pd-catalyzed olefin oxidation (i.e., the Wacker-Hoechst process). The Rh-catalyzed arene alkenylation is compatible with some electron-deficient arenes, and they are selective for anti-Markovnikov products when using substituted olefins. Finally, when using monosubstituted arenes, consistent with a metal-mediated C-H activation process, Rh-catalyzed alkenylation of substituted arenes shows selectivity for - and -alkenylation products.

摘要

概述

烷基芳烃和烯基芳烃在大规模和精细化学过程中都具有重要价值。每年生产数十亿磅的烷基芳烃和烯基芳烃。从历史上看,合成烷基芳烃的主要方法是酸催化芳烃烷基化,而烯基芳烃通常在随后的脱氢步骤中合成。但这些方法存在一些由催化机制导致的局限性,包括:(1)常见的多烷基化,这需要耗能的烷基转移过程;(2)使用α-烯烃进行芳烃烷基化时对马氏产物的定量选择性;(3)对于取代芳烃,区域选择性由芳烃取代基的电子性质决定;(4)无法在单一过程中形成烯基芳烃;(5)通常观察到与缺电子芳烃的反应活性较慢。过渡金属催化的芳基-碳偶联反应可以从芳基卤化物制备烷基或烯基芳烃。然而,这些反应通常会产生卤化废物,并且通常需要化学计量的含金属的转金属试剂。涉及芳烃C-H活化和烯烃插入金属-芳基键的过渡金属催化的芳烃烷基化或烯基化提供了一种制备烷基或烯基化芳烃的潜在替代方法。此类反应可以规避碳正离子中间体,因此可以克服上述一些局限性。特别是,控制α-烯烃插入金属-芳基键的区域选择性提供了一种选择性合成反马氏产物的策略。但是,先前报道的催化剂通常显示出有限的寿命和对反马氏产物的低选择性。

在本综述中,我们介绍了使用Rh催化剂前体进行单步芳烃烯基化的最新进展。这些反应对于未活化的烃类是成功的,并且表现出独特的选择性。烯基芳烃的催化生产通过Rh介导的芳族C-H活化进行,这可能通过协同金属化-去质子化机制发生,烯烃插入Rh-芳基键,从所得的Rh-烃产物中消除β-氢化物,以及烯基芳烃的净解离并形成Rh氢化物。Rh氢化物与Cu(II)氧化剂的反应完成了催化循环。尽管在某些条件下可以形成Rh纳米颗粒,但机理研究表明可溶性Rh物种可能是催化的原因。这些Rh催化剂前体实现了高周转率,在某些情况下观察到超过10,000次催化周转。在厌氧条件下,使用Cu(II)羧酸盐作为氧化剂。在某些情况下,已经证明了Cu(II)氧化剂的有氧循环。因此,Rh芳烃烯基化催化与Pd催化的烯烃氧化(即瓦克-赫斯特工艺)有一些相似之处。Rh催化的芳烃烯基化与一些缺电子芳烃兼容,并且在使用取代烯烃时对反马氏产物具有选择性。最后,当使用单取代芳烃时,与金属介导的C-H活化过程一致,Rh催化的取代芳烃烯基化对 - 和 - 烯基化产物具有选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验