Suppr超能文献

神经影像学生物标志物可预测重度抑郁症的治疗反应和复发。

Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder.

机构信息

Department of Psychiatry, Gil Medical Center and Gachon University College of Medicine, Incheon 21565, Korea.

出版信息

Int J Mol Sci. 2020 Mar 20;21(6):2148. doi: 10.3390/ijms21062148.

Abstract

The acute treatment duration for major depressive disorder (MDD) is 8 weeks or more. Treatment of patients with MDD without predictors of treatment response and future recurrence presents challenges and clinical problems to patients and physicians. Recently, many neuroimaging studies have been published on biomarkers for treatment response and recurrence of MDD using various methods such as brain volumetric magnetic resonance imaging (MRI), functional MRI (resting-state and affective tasks), diffusion tensor imaging, magnetic resonance spectroscopy, near-infrared spectroscopy, and molecular imaging (i.e., positron emission tomography and single photon emission computed tomography). The results have been inconsistent, and we hypothesize that this could be due to small sample size; different study design, including eligibility criteria; and differences in the imaging and analysis techniques. In the future, we suggest a more sophisticated research design, larger sample size, and a more comprehensive integration including genetics to establish biomarkers for the prediction of treatment response and recurrence of MDD.

摘要

重度抑郁症(MDD)的急性治疗期为 8 周或更长时间。对于没有治疗反应和未来复发预测因素的 MDD 患者的治疗,给患者和医生带来了挑战和临床问题。最近,许多神经影像学研究使用各种方法(如脑容积磁共振成像(MRI)、功能 MRI(静息状态和情感任务)、弥散张量成像、磁共振波谱、近红外光谱和分子成像(即正电子发射断层扫描和单光子发射计算机断层扫描))发表了关于 MDD 治疗反应和复发的生物标志物的研究。结果并不一致,我们假设这可能是由于样本量小;不同的研究设计,包括入选标准;以及成像和分析技术的差异。在未来,我们建议采用更复杂的研究设计、更大的样本量以及更全面的综合方法,包括遗传学,以建立 MDD 治疗反应和复发预测的生物标志物。

相似文献

2
Fronto-limbic neuroimaging biomarkers for diagnosis and prediction of treatment responses in major depressive disorder.
Prog Neuropsychopharmacol Biol Psychiatry. 2021 Apr 20;107:110234. doi: 10.1016/j.pnpbp.2020.110234. Epub 2020 Dec 25.
4
Diagnosis of Major Depressive Disorder Using Machine Learning Based on Multisequence MRI Neuroimaging Features.
J Magn Reson Imaging. 2023 Nov;58(5):1420-1430. doi: 10.1002/jmri.28650. Epub 2023 Feb 16.
6
A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression.
Hum Brain Mapp. 2019 Nov 1;40(16):4618-4629. doi: 10.1002/hbm.24725. Epub 2019 Jul 22.
7
Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies.
Biol Psychiatry. 2017 Sep 1;82(5):330-338. doi: 10.1016/j.biopsych.2016.10.028. Epub 2016 Nov 9.
8
A Systematic Evaluation of Machine Learning-Based Biomarkers for Major Depressive Disorder.
JAMA Psychiatry. 2024 Apr 1;81(4):386-395. doi: 10.1001/jamapsychiatry.2023.5083.
9
Development of Neuroimaging-Based Biomarkers in Psychiatry.
Adv Exp Med Biol. 2019;1192:159-195. doi: 10.1007/978-981-32-9721-0_9.
10
Molecular, Functional, and Structural Imaging of Major Depressive Disorder.
Neurosci Bull. 2016 Jun;32(3):273-85. doi: 10.1007/s12264-016-0030-0. Epub 2016 May 3.

引用本文的文献

1
Discovering action insights from large-scale assessment log data using machine learning.
Sci Rep. 2025 Aug 19;15(1):30412. doi: 10.1038/s41598-025-14802-6.
2
Unveiling the neural signatures of adolescents with non-suicidal self-injury behavior: an fNIRS study.
Front Psychiatry. 2025 Jul 24;16:1604474. doi: 10.3389/fpsyt.2025.1604474. eCollection 2025.
4
Cytokine-Related Genes and Inflammatory Profiles as Potential Biomarkers in Major Depressive Disorder.
Psychiatry Investig. 2025 Aug;22(8):858-869. doi: 10.30773/pi.2025.0013. Epub 2025 Jul 31.
5
Virtual sailing exercise to improve major depressive disorder: A pilot clinical trial protocol.
Contemp Clin Trials Commun. 2025 Jun 20;46:101510. doi: 10.1016/j.conctc.2025.101510. eCollection 2025 Aug.
7
Unveiling the invisible: How cutting-edge neuroimaging transforms adolescent depression diagnosis.
World J Psychiatry. 2025 May 19;15(5):102953. doi: 10.5498/wjp.v15.i5.102953.

本文引用的文献

1
Ensemble Learning for Early-Response Prediction of Antidepressant Treatment in Major Depressive Disorder.
J Magn Reson Imaging. 2020 Jul;52(1):161-171. doi: 10.1002/jmri.27029. Epub 2019 Dec 20.
2
Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies.
Psychol Med. 2020 Jan;50(2):187-209. doi: 10.1017/S0033291719003660. Epub 2019 Dec 20.
3
Reward related ventral striatal activity and differential response to sertraline versus placebo in depressed individuals.
Mol Psychiatry. 2020 Jul;25(7):1526-1536. doi: 10.1038/s41380-019-0490-5. Epub 2019 Aug 28.
4
Examining raphe-amygdala structural connectivity as a biological predictor of SSRI response.
J Affect Disord. 2019 Sep 1;256:8-16. doi: 10.1016/j.jad.2019.05.055. Epub 2019 May 28.
5
Brain functional alterations observed 4-weekly in major depressive disorder following antidepressant treatment.
J Affect Disord. 2019 Jun 1;252:25-31. doi: 10.1016/j.jad.2019.04.001. Epub 2019 Apr 3.
8
Altered Gamma-Band Activity as a Potential Biomarker for the Recurrence of Major Depressive Disorder.
Front Psychiatry. 2018 Dec 12;9:691. doi: 10.3389/fpsyt.2018.00691. eCollection 2018.
9
Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder.
Neuropsychopharmacology. 2018 Oct;43(11):2221-2230. doi: 10.1038/s41386-018-0122-9. Epub 2018 Jun 19.
10
EEG gamma synchronization is associated with response to paroxetine treatment.
J Affect Disord. 2018 Aug 1;235:114-116. doi: 10.1016/j.jad.2018.04.041. Epub 2018 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验