Suppr超能文献

双反应性:一种用于估计共价弹头反应性的机器学习模型。

BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity.

机构信息

Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstrasse 65, 88397 Biberach an der Riß, Germany.

出版信息

J Chem Inf Model. 2020 Jun 22;60(6):2915-2923. doi: 10.1021/acs.jcim.9b01058. Epub 2020 May 6.

Abstract

In the past decade, the pharmaceutical industry has paid closer attention to covalent drugs. Differently from standard noncovalent drugs, these compounds can exhibit peculiar properties, such as higher potency or longer duration of target inhibition with a potentially lower dosage. These properties are mainly driven by the reactive functional group present in the compound, the so-called warhead that forms a covalent bond with a specific nucleophilic amino-acid on the target. In this work, we report the possibility to combine ab initio activation energies with machine-learning to estimate covalent compound intrinsic reactivity. The idea behind this approach is to have a precise estimation of the transition state barriers, and thus of the compound reactivity, but with the speed of a machine-learning algorithm. We call this method "BIreactive". Here, we demonstrate this approach on acrylamides and 2-chloroacetamides, two warhead classes that possess different reaction mechanisms. In combination with our recently implemented truncation algorithm, we also demonstrate the possibility to use BIreactive not only for fragments but also for lead-like molecules. The generic nature of this approach allows also the extension to several other warheads. The combination of these factors makes BIreactive a valuable tool for the covalent drug discovery process in a pharmaceutical context.

摘要

在过去的十年中,制药行业越来越关注共价药物。与标准的非共价药物不同,这些化合物可以表现出特殊的性质,例如更高的效力或更长的靶抑制持续时间,潜在的剂量更低。这些特性主要是由化合物中存在的反应性功能基团驱动的,即所谓的弹头,它与靶标上的特定亲核氨基酸形成共价键。在这项工作中,我们报告了将从头算活化能与机器学习相结合来估计共价化合物内在反应性的可能性。这种方法的思路是对过渡态势垒进行精确估计,从而对化合物的反应性进行精确估计,但速度要快于机器学习算法。我们将这种方法称为“BIreactive”。在这里,我们展示了这种方法在丙烯酰胺和 2-氯乙酰胺上的应用,这两种弹头类具有不同的反应机制。结合我们最近实现的截断算法,我们还展示了 BIreactive 不仅可以用于片段,还可以用于类先导化合物的可能性。这种方法的通用性还允许将其扩展到其他几种弹头。这些因素的结合使 BIreactive 成为制药领域共价药物发现过程中的一种有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验