Suppr超能文献

氨酰-tRNA 合成酶抑制激活了一条在哺乳动物细胞中从经典氨基酸反应分支出来的通路。

Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells.

机构信息

Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115.

Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458.

出版信息

Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8900-8911. doi: 10.1073/pnas.1913788117. Epub 2020 Apr 6.

Abstract

Signaling pathways that sense amino acid abundance are integral to tissue homeostasis and cellular defense. Our laboratory has previously shown that halofuginone (HF) inhibits the prolyl-tRNA synthetase catalytic activity of glutamyl-prolyl-tRNA synthetase (EPRS), thereby activating the amino acid response (AAR). We now show that HF treatment selectively inhibits inflammatory responses in diverse cell types and that these therapeutic benefits occur in cells that lack GCN2, the signature effector of the AAR. Depletion of arginine, histidine, or lysine from cultured fibroblast-like synoviocytes recapitulates key aspects of HF treatment, without utilizing GCN2 or mammalian target of rapamycin complex 1 pathway signaling. Like HF, the threonyl-tRNA synthetase inhibitor borrelidin suppresses the induction of tissue remodeling and inflammatory mediators in cytokine-stimulated fibroblast-like synoviocytes without GCN2, but both aminoacyl-tRNA synthetase (aaRS) inhibitors are sensitive to the removal of GCN1. GCN1, an upstream component of the AAR pathway, binds to ribosomes and is required for GCN2 activation. These observations indicate that aaRS inhibitors, like HF, can modulate inflammatory response without the AAR/GCN2 signaling cassette, and that GCN1 has a role that is distinct from its activation of GCN2. We propose that GCN1 participates in a previously unrecognized amino acid sensor pathway that branches from the canonical AAR.

摘要

感知氨基酸丰度的信号通路对于组织稳态和细胞防御至关重要。我们实验室之前已经表明,卤夫酮(HF)抑制谷氨酰-脯氨酰-tRNA 合成酶(EPRS)的脯氨酰-tRNA 合成酶催化活性,从而激活氨基酸反应(AAR)。我们现在表明,HF 处理选择性地抑制多种细胞类型中的炎症反应,并且这些治疗益处发生在缺乏 AAR 的标志性效应物 GCN2 的细胞中。从培养的成纤维样滑膜细胞中耗尽精氨酸、组氨酸或赖氨酸,可重现 HF 治疗的关键方面,而无需利用 GCN2 或哺乳动物雷帕霉素靶蛋白复合物 1 途径信号。与 HF 一样,苏氨酰-tRNA 合成酶抑制剂博来霉素抑制细胞因子刺激的成纤维样滑膜细胞中组织重塑和炎症介质的诱导,而无需 GCN2,但两种氨酰-tRNA 合成酶(aaRS)抑制剂对 GCN1 的去除均敏感。AAR 途径的上游成分 GCN1 结合到核糖体上,并且 GCN2 的激活是必需的。这些观察结果表明,与 AAR/GCN2 信号盒无关,aaRS 抑制剂(如 HF)可以调节炎症反应,并且 GCN1 具有与其激活 GCN2 不同的作用。我们提出 GCN1 参与了从经典 AAR 分支出来的先前未被认识到的氨基酸传感器途径。

相似文献

1
Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells.
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8900-8911. doi: 10.1073/pnas.1913788117. Epub 2020 Apr 6.
2
Activation of the Amino Acid Response Pathway Blunts the Effects of Cardiac Stress.
J Am Heart Assoc. 2017 May 9;6(5):e004453. doi: 10.1161/JAHA.116.004453.
3
Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase.
Nat Chem Biol. 2012 Feb 12;8(3):311-7. doi: 10.1038/nchembio.790.
4
Conformational changes in human prolyl-tRNA synthetase upon binding of the substrates proline and ATP and the inhibitor halofuginone.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2136-45. doi: 10.1107/S0907444913020556. Epub 2013 Sep 20.
5
The amino acid sensor GCN2 suppresses terminal oligopyrimidine (TOP) mRNA translation via La-related protein 1 (LARP1).
J Biol Chem. 2022 Sep;298(9):102277. doi: 10.1016/j.jbc.2022.102277. Epub 2022 Jul 19.
7
Glutamyl-Prolyl-tRNA Synthetase Regulates Proline-Rich Pro-Fibrotic Protein Synthesis During Cardiac Fibrosis.
Circ Res. 2020 Aug 28;127(6):827-846. doi: 10.1161/CIRCRESAHA.119.315999. Epub 2020 Jul 1.
8
Discordant regulation of eIF2 kinase GCN2 and mTORC1 during nutrient stress.
Nucleic Acids Res. 2021 Jun 4;49(10):5726-5742. doi: 10.1093/nar/gkab362.
9
Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice.
PLoS Genet. 2020 Apr 23;16(4):e1008693. doi: 10.1371/journal.pgen.1008693. eCollection 2020 Apr.
10
Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response.
EMBO J. 2022 Jun 1;41(11):e109985. doi: 10.15252/embj.2021109985. Epub 2022 Apr 25.

引用本文的文献

1
Differential cell survival outcomes in response to diverse amino acid stress.
Life Sci Alliance. 2025 Sep 5;8(11). doi: 10.26508/lsa.202503324. Print 2025 Nov.
3
tRNA synthetase activity is required for stress granule and P-body assembly.
bioRxiv. 2025 Mar 13:2025.03.10.642431. doi: 10.1101/2025.03.10.642431.
5
Another Notch in the Belt of Rheumatoid Arthritis.
Arthritis Rheumatol. 2024 Oct;76(10):1475-1487. doi: 10.1002/art.42937. Epub 2024 Aug 9.
6
Emerging Role of GCN1 in Disease and Homeostasis.
Int J Mol Sci. 2024 Mar 5;25(5):2998. doi: 10.3390/ijms25052998.
7
DWN12088, A Prolyl-tRNA Synthetase Inhibitor, Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis.
Diabetes Metab J. 2024 Jan;48(1):97-111. doi: 10.4093/dmj.2022.0367. Epub 2024 Jan 3.
8
Transfer RNAs as dynamic and critical regulators of cancer progression.
Nat Rev Cancer. 2023 Nov;23(11):746-761. doi: 10.1038/s41568-023-00611-4. Epub 2023 Oct 9.
9
Immune priming in plants: from the onset to transgenerational maintenance.
Essays Biochem. 2022 Sep 30;66(5):635-646. doi: 10.1042/EBC20210082.

本文引用的文献

1
Amino acid starvation enhances vaccine efficacy by augmenting neutralizing antibody production.
Sci Signal. 2019 Nov 12;12(607):eaav4717. doi: 10.1126/scisignal.aav4717.
2
Novel Pharmacological Therapy in Inflammatory Bowel Diseases: Beyond Anti-Tumor Necrosis Factor.
Front Pharmacol. 2019 Jun 18;10:671. doi: 10.3389/fphar.2019.00671. eCollection 2019.
4
Activation of GCN2 by the ribosomal P-stalk.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4946-4954. doi: 10.1073/pnas.1813352116. Epub 2019 Feb 25.
5
Immune control by amino acid catabolism during tumorigenesis and therapy.
Nat Rev Cancer. 2019 Mar;19(3):162-175. doi: 10.1038/s41568-019-0106-z.
6
An evolutionary perspective on immunometabolism.
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aar3932.
8
ZNF598 Is a Quality Control Sensor of Collided Ribosomes.
Mol Cell. 2018 Nov 1;72(3):469-481.e7. doi: 10.1016/j.molcel.2018.08.037. Epub 2018 Oct 4.
9
Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells.
Mol Cell. 2018 Jul 19;71(2):229-243.e11. doi: 10.1016/j.molcel.2018.06.041.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验