Suppr超能文献

用于神经成像的深度残差学习:预测阿尔茨海默病进展的应用。

Deep residual learning for neuroimaging: An application to predict progression to Alzheimer's disease.

作者信息

Abrol Anees, Bhattarai Manish, Fedorov Alex, Du Yuhui, Plis Sergey, Calhoun Vince

机构信息

Joint (GSU/GaTech/Emory) Center for Transational Research in Neuroimaging and Data Science, Atlanta, GA, 30303, USA; The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM, 87106, USA; Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA.

Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, 87131, USA; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

出版信息

J Neurosci Methods. 2020 Jun 1;339:108701. doi: 10.1016/j.jneumeth.2020.108701. Epub 2020 Apr 8.

Abstract

BACKGROUND

The unparalleled performance of deep learning approaches in generic image processing has motivated its extension to neuroimaging data. These approaches learn abstract neuroanatomical and functional brain alterations that could enable exceptional performance in classification of brain disorders, predicting disease progression, and localizing brain abnormalities.

NEW METHOD

This work investigates the suitability of a modified form of deep residual neural networks (ResNet) for studying neuroimaging data in the specific application of predicting progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Prediction was conducted first by training the deep models using MCI individuals only, followed by a domain transfer learning version that additionally trained on AD and controls. We also demonstrate a network occlusion based method to localize abnormalities.

RESULTS

The implemented framework captured non-linear features that successfully predicted AD progression and also conformed to the spectrum of various clinical scores. In a repeated cross-validated setup, the learnt predictive models showed highly similar peak activations that corresponded to previous AD reports.

COMPARISON WITH EXISTING METHODS

The implemented architecture achieved a significant performance improvement over the classical support vector machine and the stacked autoencoder frameworks (p <  0.005), numerically better than state-of-the-art performance using sMRI data alone (> 7% than the second-best performing method) and within 1% of the state-of-the-art performance considering learning using multiple neuroimaging modalities as well.

CONCLUSIONS

The explored frameworks reflected the high potential of deep learning architectures in learning subtle predictive features and utility in critical applications such as predicting and understanding disease progression.

摘要

背景

深度学习方法在通用图像处理中表现卓越,这促使其被应用于神经影像数据。这些方法能够学习抽象的神经解剖学和功能性脑改变,从而在脑疾病分类、预测疾病进展以及定位脑异常方面展现出卓越性能。

新方法

本研究探讨了一种改进形式的深度残差神经网络(ResNet)在特定应用场景下研究神经影像数据的适用性,该应用场景为预测从轻度认知障碍(MCI)到阿尔茨海默病(AD)的疾病进展。首先仅使用MCI个体训练深度模型进行预测,随后采用一种域转移学习版本,该版本还额外使用AD个体和对照进行训练。我们还展示了一种基于网络遮挡的方法来定位异常。

结果

所实现的框架捕捉到了成功预测AD进展的非线性特征,并且与各种临床评分的范围相符。在重复交叉验证设置中,所学习到的预测模型显示出高度相似的峰值激活,这与先前的AD报告一致。

与现有方法的比较

所实现的架构相较于经典支持向量机和堆叠自动编码器框架在性能上有显著提升(p < 0.005),在数值上优于仅使用结构磁共振成像(sMRI)数据的当前最优性能(比第二优方法高出> 7%),并且在考虑使用多种神经影像模态进行学习的情况下,与当前最优性能相差在1%以内。

结论

所探索的框架反映了深度学习架构在学习微妙预测特征方面的巨大潜力,以及在诸如预测和理解疾病进展等关键应用中的实用性。

相似文献

1
Deep residual learning for neuroimaging: An application to predict progression to Alzheimer's disease.
J Neurosci Methods. 2020 Jun 1;339:108701. doi: 10.1016/j.jneumeth.2020.108701. Epub 2020 Apr 8.
2
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
3
Multimodal Data Fusion of Deep Learning and Dynamic Functional Connectivity Features to Predict Alzheimer's Disease Progression.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4409-4413. doi: 10.1109/EMBC.2019.8856500.
7
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X.
9
Deep Learning for Alzheimer's Disease Classification using Texture Features.
Curr Med Imaging Rev. 2019;15(7):689-698. doi: 10.2174/1573405615666190404163233.

引用本文的文献

6
A hybrid transformer-based approach for early detection of Alzheimer's disease using MRI images.
Bioimpacts. 2025 Apr 12;15:30849. doi: 10.34172/bi.30849. eCollection 2025.
7
Multimodal MRI accurately identifies amyloid status in unbalanced cohorts in Alzheimer's disease continuum.
Netw Neurosci. 2025 Mar 20;9(1):259-279. doi: 10.1162/netn_a_00423. eCollection 2025.
8
Machine Learning Approaches for Predicting Progression to Alzheimer's Disease in Patients with Mild Cognitive Impairment.
J Med Biol Eng. 2025;45(1):63-83. doi: 10.1007/s40846-024-00918-z. Epub 2024 Dec 24.
10
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.

本文引用的文献

1
Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation.
Med Image Anal. 2020 Jan;59:101557. doi: 10.1016/j.media.2019.101557. Epub 2019 Sep 7.
2
Predicting Alzheimer's disease progression using multi-modal deep learning approach.
Sci Rep. 2019 Feb 13;9(1):1952. doi: 10.1038/s41598-018-37769-z.
3
Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.
Neuroimage Clin. 2019;21:101645. doi: 10.1016/j.nicl.2018.101645. Epub 2018 Dec 18.
5
Editorial on special issue: Machine learning on MCI.
J Neurosci Methods. 2018 May 15;302:1-2. doi: 10.1016/j.jneumeth.2018.03.011. Epub 2018 Mar 23.
6
Schizophrenia Shows Disrupted Links between Brain Volume and Dynamic Functional Connectivity.
Front Neurosci. 2017 Nov 7;11:624. doi: 10.3389/fnins.2017.00624. eCollection 2017.
7
The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline.
Brain. 2018 Jan 1;141(1):37-47. doi: 10.1093/brain/awx194.
8
Replicability of time-varying connectivity patterns in large resting state fMRI samples.
Neuroimage. 2017 Dec;163:160-176. doi: 10.1016/j.neuroimage.2017.09.020. Epub 2017 Sep 13.
9
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验