Suppr超能文献

网络医学中的分子网络:开发与应用。

Molecular networks in Network Medicine: Development and applications.

机构信息

Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Department of Pharmacology and Personalized Medicine, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2020 Nov;12(6):e1489. doi: 10.1002/wsbm.1489. Epub 2020 Apr 19.

Abstract

Network Medicine applies network science approaches to investigate disease pathogenesis. Many different analytical methods have been used to infer relevant molecular networks, including protein-protein interaction networks, correlation-based networks, gene regulatory networks, and Bayesian networks. Network Medicine applies these integrated approaches to Omics Big Data (including genetics, epigenetics, transcriptomics, metabolomics, and proteomics) using computational biology tools and, thereby, has the potential to provide improvements in the diagnosis, prognosis, and treatment of complex diseases. We discuss briefly the types of molecular data that are used in molecular network analyses, survey the analytical methods for inferring molecular networks, and review efforts to validate and visualize molecular networks. Successful applications of molecular network analysis have been reported in pulmonary arterial hypertension, coronary heart disease, diabetes mellitus, chronic lung diseases, and drug development. Important knowledge gaps in Network Medicine include incompleteness of the molecular interactome, challenges in identifying key genes within genetic association regions, and limited applications to human diseases. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Translational Medicine Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.

摘要

网络医学将网络科学方法应用于研究疾病发病机制。已经使用了许多不同的分析方法来推断相关的分子网络,包括蛋白质-蛋白质相互作用网络、基于相关的网络、基因调控网络和贝叶斯网络。网络医学使用计算生物学工具将这些综合方法应用于组学大数据(包括遗传学、表观遗传学、转录组学、代谢组学和蛋白质组学),从而有可能改善复杂疾病的诊断、预后和治疗。我们简要讨论了用于分子网络分析的分子数据类型,调查了推断分子网络的分析方法,并回顾了验证和可视化分子网络的努力。分子网络分析的成功应用已在肺动脉高压、冠心病、糖尿病、慢性肺部疾病和药物开发中得到报道。网络医学中的重要知识空白包括分子互作组的不完整性、在遗传关联区域中识别关键基因的挑战以及在人类疾病中的应用有限。本文归入以下类别:系统特性和过程的模型 > 机制模型 转化、基因组和系统医学 > 转化医学 分析和计算方法 > 分析方法 分析和计算方法 > 计算方法。

相似文献

1
Molecular networks in Network Medicine: Development and applications.
Wiley Interdiscip Rev Syst Biol Med. 2020 Nov;12(6):e1489. doi: 10.1002/wsbm.1489. Epub 2020 Apr 19.
2
Inferring Interaction Networks from Transcriptomic Data: Methods and Applications.
Methods Mol Biol. 2024;2812:11-37. doi: 10.1007/978-1-0716-3886-6_2.
3
A review on the computational approaches for gene regulatory network construction.
Comput Biol Med. 2014 May;48:55-65. doi: 10.1016/j.compbiomed.2014.02.011. Epub 2014 Feb 24.
5
Uncovering Protein Networks in Cardiovascular Proteomics.
Mol Cell Proteomics. 2023 Aug;22(8):100607. doi: 10.1016/j.mcpro.2023.100607. Epub 2023 Jun 24.
6
Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks.
Methods Mol Biol. 2019;1883:161-194. doi: 10.1007/978-1-4939-8882-2_7.
8
Biological Network Approaches and Applications in Rare Disease Studies.
Genes (Basel). 2019 Oct 12;10(10):797. doi: 10.3390/genes10100797.
10
Integrating molecular networks with genetic variant interpretation for precision medicine.
Wiley Interdiscip Rev Syst Biol Med. 2019 May;11(3):e1443. doi: 10.1002/wsbm.1443. Epub 2018 Dec 12.

引用本文的文献

1
Introduction to correlation networks: Interdisciplinary approaches beyond thresholding.
Phys Rep. 2025 Aug 21;1136:1-39. doi: 10.1016/j.physrep.2025.06.002. Epub 2025 Jun 30.
2
Ginsenoside Rb1 Alleviated the AKI to CKD Transition by Targeting VEGFR2.
J Cell Mol Med. 2025 Jul;29(14):e70732. doi: 10.1111/jcmm.70732.
3
Comparing gene-gene co-expression network approaches for the analysis of cell differentiation and specification on scRNAseq data.
Comput Struct Biotechnol J. 2025 Jun 6;27:2747-2756. doi: 10.1016/j.csbj.2025.05.040. eCollection 2025.
4
Recovering time-varying networks from single-cell data.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i628-i636. doi: 10.1093/bioinformatics/btaf210.
5
Role of microRNAs in chronic hepatitis E viral infection.
Bioinformation. 2025 Feb 28;21(2):240-252. doi: 10.6026/973206300210240. eCollection 2025.
6
GSFM: A genome-scale functional module transformation to represent drug efficacy for drug discovery.
Acta Pharm Sin B. 2025 Jan;15(1):133-150. doi: 10.1016/j.apsb.2024.08.017. Epub 2024 Aug 24.
7
HHIP protein interactions in lung cells provide insight into COPD pathogenesis.
Hum Mol Genet. 2025 Apr 17;34(9):777-789. doi: 10.1093/hmg/ddaf016.
8
Reversal of inflammatory reprogramming by vasodilator agents in pulmonary hypertension.
ERJ Open Res. 2025 Jan 13;11(1). doi: 10.1183/23120541.00486-2024. eCollection 2025 Jan.
9
Disease Network-Based Approaches to Study Comorbidity in Heart Failure: Current State and Future Perspectives.
Curr Heart Fail Rep. 2024 Dec 27;22(1):6. doi: 10.1007/s11897-024-00693-7.
10
High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction.
Basic Res Cardiol. 2025 Apr;120(2):347-361. doi: 10.1007/s00395-024-01093-7. Epub 2024 Dec 27.

本文引用的文献

1
Comparing methods for comparing networks.
Sci Rep. 2019 Nov 26;9(1):17557. doi: 10.1038/s41598-019-53708-y.
2
Ten simple rules to create biological network figures for communication.
PLoS Comput Biol. 2019 Sep 26;15(9):e1007244. doi: 10.1371/journal.pcbi.1007244. eCollection 2019 Sep.
3
An Integrative Analysis of Time-varying Regulatory Networks From High-dimensional Data.
Proc IEEE Int Conf Big Data. 2018 Dec;2018:3798-3807. doi: 10.1109/BigData.2018.8622361. Epub 2019 Jan 24.
4
Connectivity Significance for Disease Gene Prioritization in an Expanding Universe.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Nov-Dec;17(6):2155-2161. doi: 10.1109/TCBB.2019.2938512. Epub 2020 Dec 8.
5
Network Medicine in the Age of Biomedical Big Data.
Front Genet. 2019 Apr 11;10:294. doi: 10.3389/fgene.2019.00294. eCollection 2019.
6
CRISPR-Based Editing Reveals Edge-Specific Effects in Biological Networks.
CRISPR J. 2018 Aug;1:286-293. doi: 10.1089/crispr.2018.0018.
7
Tissue-engineered disease models.
Nat Biomed Eng. 2018 Dec;2(12):879-880. doi: 10.1038/s41551-018-0339-2.
8
Network Medicine in Pathobiology.
Am J Pathol. 2019 Jul;189(7):1311-1326. doi: 10.1016/j.ajpath.2019.03.009. Epub 2019 Apr 20.
9
Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art.
J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Jun 1;1117:136-147. doi: 10.1016/j.jchromb.2019.04.009. Epub 2019 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验