Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and Personalized Medicine, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands.
Wiley Interdiscip Rev Syst Biol Med. 2020 Nov;12(6):e1489. doi: 10.1002/wsbm.1489. Epub 2020 Apr 19.
Network Medicine applies network science approaches to investigate disease pathogenesis. Many different analytical methods have been used to infer relevant molecular networks, including protein-protein interaction networks, correlation-based networks, gene regulatory networks, and Bayesian networks. Network Medicine applies these integrated approaches to Omics Big Data (including genetics, epigenetics, transcriptomics, metabolomics, and proteomics) using computational biology tools and, thereby, has the potential to provide improvements in the diagnosis, prognosis, and treatment of complex diseases. We discuss briefly the types of molecular data that are used in molecular network analyses, survey the analytical methods for inferring molecular networks, and review efforts to validate and visualize molecular networks. Successful applications of molecular network analysis have been reported in pulmonary arterial hypertension, coronary heart disease, diabetes mellitus, chronic lung diseases, and drug development. Important knowledge gaps in Network Medicine include incompleteness of the molecular interactome, challenges in identifying key genes within genetic association regions, and limited applications to human diseases. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Translational Medicine Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.
网络医学将网络科学方法应用于研究疾病发病机制。已经使用了许多不同的分析方法来推断相关的分子网络,包括蛋白质-蛋白质相互作用网络、基于相关的网络、基因调控网络和贝叶斯网络。网络医学使用计算生物学工具将这些综合方法应用于组学大数据(包括遗传学、表观遗传学、转录组学、代谢组学和蛋白质组学),从而有可能改善复杂疾病的诊断、预后和治疗。我们简要讨论了用于分子网络分析的分子数据类型,调查了推断分子网络的分析方法,并回顾了验证和可视化分子网络的努力。分子网络分析的成功应用已在肺动脉高压、冠心病、糖尿病、慢性肺部疾病和药物开发中得到报道。网络医学中的重要知识空白包括分子互作组的不完整性、在遗传关联区域中识别关键基因的挑战以及在人类疾病中的应用有限。本文归入以下类别:系统特性和过程的模型 > 机制模型 转化、基因组和系统医学 > 转化医学 分析和计算方法 > 分析方法 分析和计算方法 > 计算方法。