Suppr超能文献

在共定位分析中引出先验信息并放宽单一因果变异假设。

Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses.

机构信息

Cambridge Institute for Therapeutic Immunology & Infectious Disease, and MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS Genet. 2020 Apr 20;16(4):e1008720. doi: 10.1371/journal.pgen.1008720. eCollection 2020 Apr.

Abstract

Horizontal integration of summary statistics from different GWAS traits can be used to evaluate evidence for their shared genetic causality. One popular method to do this is a Bayesian method, coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium estimates and is now being used routinely to perform thousands of comparisons between traits. Here we show that while most users do not adjust default software values, misspecification of prior parameters can substantially alter posterior inference. We suggest data driven methods to derive sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of posterior inference. The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant per trait. This assumption can be relaxed by stepwise conditioning, but this requires external software and an LD matrix aligned to study alleles. We have now implemented conditioning within coloc, and propose a new alternative method, masking, that does not require LD and approximates conditioning when causal variants are independent. Importantly, masking can be used in combination with conditioning where allelically aligned LD estimates are available for only a single trait. We have implemented these developments in a new version of coloc which we hope will enable more informed choice of priors and overcome the restriction of the single causal variant assumptions in coloc analysis.

摘要

来自不同 GWAS 性状的汇总统计数据的水平整合可用于评估它们共同遗传因果关系的证据。一种流行的方法是贝叶斯方法 coloc,它吸引人之处在于只需要 GWAS 汇总统计数据,而不需要连锁不平衡估计,现在正在被常规地用于在性状之间进行数千次比较。在这里,我们表明,尽管大多数用户不调整默认软件值,但先验参数的指定不当会极大地改变后验推断。我们建议使用数据驱动的方法来得出合理的先验值,并演示如何使用敏感性分析来评估后验推断的稳健性。coloc 的灵活性是以每个性状单一因果变异的不切实际假设为代价的。通过逐步条件化可以放宽此假设,但这需要外部软件和与研究等位基因对齐的 LD 矩阵。我们现在已经在 coloc 中实现了条件化,并提出了一种新的替代方法——掩蔽,它不需要 LD 并且在因果变异独立时近似条件化。重要的是,掩蔽可以与条件化结合使用,其中仅为单个性状提供等位基因对齐的 LD 估计值。我们已经在 coloc 的新版本中实现了这些开发,我们希望这将使更明智地选择先验和克服 coloc 分析中单一因果变异假设的限制成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/077d/7192519/01b7ff4c7cf7/pgen.1008720.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验