Suppr超能文献

群体大小优化在 SARS-CoV-2 混合检测策略中:一个简单的数学模型。

Optimization of group size in pool testing strategy for SARS-CoV-2: A simple mathematical model.

机构信息

Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile.

Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Arica, Chile.

出版信息

J Med Virol. 2020 Oct;92(10):1988-1994. doi: 10.1002/jmv.25929. Epub 2020 May 3.

Abstract

Coronavirus disease (Covid-19) has reached unprecedented pandemic levels and is affecting almost every country in the world. Ramping up the testing capacity of a country supposes an essential public health response to this new outbreak. A pool testing strategy where multiple samples are tested in a single reverse transcriptase-polymerase chain reaction (RT-PCR) kit could potentially increase a country's testing capacity. The aim of this study is to propose a simple mathematical model to estimate the optimum number of pooled samples according to the relative prevalence of positive tests in a particular healthcare context, assuming that if a group tests negative, no further testing is done whereas if a group tests positive, all the subjects of the group are retested individually. The model predicts group sizes that range from 11 to 3 subjects. For a prevalence of 10% of positive tests, 40.6% of tests can be saved using testing groups of four subjects. For a 20% prevalence, 17.9% of tests can be saved using groups of three subjects. For higher prevalences, the strategy flattens and loses effectiveness. Pool testing individuals for severe acute respiratory syndrome coronavirus 2 is a valuable strategy that could considerably boost a country's testing capacity. However, further studies are needed to address how large these groups can be, without losing sensitivity on the RT-PCR. The strategy best works in settings with a low prevalence of positive tests. It is best implemented in subgroups with low clinical suspicion. The model can be adapted to specific prevalences, generating a tailored to the context implementation of the pool testing strategy.

摘要

冠状病毒病(COVID-19)已达到前所未有的大流行水平,几乎影响到世界上每个国家。提高一个国家的检测能力是对这种新爆发的重要公共卫生应对措施。在单个逆转录-聚合酶链反应(RT-PCR)试剂盒中同时检测多个样本的合并检测策略可能会提高一个国家的检测能力。本研究旨在根据特定医疗保健环境中阳性检测的相对流行率,提出一种简单的数学模型来估计最佳的合并样本数量,假设如果一组检测结果为阴性,则无需进一步检测;而如果一组检测结果为阳性,则对该组的所有个体进行单独重新检测。该模型预测的合并样本大小范围为 11 到 3 个个体。在阳性检测率为 10%的情况下,使用 4 个个体的合并检测组可以节省 40.6%的检测量。在阳性检测率为 20%的情况下,使用 3 个个体的合并检测组可以节省 17.9%的检测量。对于更高的阳性检测率,该策略会趋于平稳,失去效果。合并检测严重急性呼吸综合征冠状病毒 2 的个体是一种有价值的策略,可以大大提高一个国家的检测能力。然而,还需要进一步研究如何在不降低 RT-PCR 敏感性的情况下,扩大这些合并检测组的规模。该策略在阳性检测率较低的环境中效果最佳。在临床怀疑程度较低的亚组中实施效果最佳。该模型可以适用于特定的流行率,针对具体情况实施合并检测策略。

相似文献

1
Optimization of group size in pool testing strategy for SARS-CoV-2: A simple mathematical model.
J Med Virol. 2020 Oct;92(10):1988-1994. doi: 10.1002/jmv.25929. Epub 2020 May 3.
2
Universal screening for SARS-CoV-2 infection: a rapid review.
Cochrane Database Syst Rev. 2020 Sep 15;9(9):CD013718. doi: 10.1002/14651858.CD013718.
4
Comparing two sample pooling strategies for SARS-CoV-2 RNA detection for efficient screening of COVID-19.
J Med Virol. 2021 May;93(5):2805-2809. doi: 10.1002/jmv.26632. Epub 2021 Mar 11.
5
Evaluating a SARS-CoV-2 screening strategy based on serological tests.
Epidemiol Prev. 2020 Sep-Dec;44(5-6 Suppl 2):193-199. doi: 10.19191/EP20.5-6.S2.118.
7
Evaluation of sample pooling for diagnosis of COVID-19 by real time-PCR: A resource-saving combat strategy.
J Med Virol. 2021 Mar;93(3):1526-1531. doi: 10.1002/jmv.26475. Epub 2020 Sep 29.
8
Simple Questionnaires to Improve Pooling Strategies for SARS-CoV-2 Laboratory Testing.
Ann Glob Health. 2020 Nov 18;86(1):148. doi: 10.5334/aogh.3126.
10
Evaluation of sample pooling for screening of SARS CoV-2.
PLoS One. 2021 Feb 26;16(2):e0247767. doi: 10.1371/journal.pone.0247767. eCollection 2021.

引用本文的文献

1
Reagent efficiency and analytical sensitivity optimization for a reliable SARS-CoV-2 pool-based testing strategy.
Heliyon. 2025 Jan 2;11(1):e41623. doi: 10.1016/j.heliyon.2025.e41623. eCollection 2025 Jan 15.
2
Enhancing RT-PCR Throughput and Sensitivity through Large-Scale Sample Pooling Using a Nano-Hybrid Membrane.
Adv Sci (Weinh). 2025 Mar;12(10):e2408771. doi: 10.1002/advs.202408771. Epub 2025 Jan 20.
3
Novel sampling strategy for regular nucleic acid testing in low risk areas during epidemics.
Sci Rep. 2024 Nov 15;14(1):28241. doi: 10.1038/s41598-024-79990-z.
4
Transdisciplinary research before, during and after COVID-19 vaccination in Chile: a virtuoso collaboration with future perspectives.
Front Public Health. 2024 Apr 3;12:1354645. doi: 10.3389/fpubh.2024.1354645. eCollection 2024.
5
Optimization of Screening Strategies for COVID-19: Scoping Review.
JMIR Public Health Surveill. 2024 Feb 27;10:e44349. doi: 10.2196/44349.
7
Heterogeneity Aware Two-Stage Group Testing.
IEEE Trans Signal Process. 2021 Jul 2;69:3977-3990. doi: 10.1109/TSP.2021.3093785. eCollection 2021.
8
Sample pooling and incurred samples improve analytical throughput and quality control of lipophilic phycotoxins screening in bivalve mollusks.
Anal Bioanal Chem. 2023 Aug;415(20):5023-5034. doi: 10.1007/s00216-023-04788-3. Epub 2023 Jun 22.
9
Evaluation of sample pooling for the detection of SARS-CoV-2 in a resource-limited setting, Dominican Republic.
Enferm Infecc Microbiol Clin (Engl Ed). 2023 Jan;41(1):29-32. doi: 10.1016/j.eimce.2022.11.009.
10
Optimization in the Context of COVID-19 Prediction and Control: A Literature Review.
IEEE Access. 2021 Sep 17;9:130072-130093. doi: 10.1109/ACCESS.2021.3113812. eCollection 2021.

本文引用的文献

1
Detection of SARS-CoV-2 by RT-PCR in anal from patients who have recovered from coronavirus disease 2019.
J Med Virol. 2020 Oct;92(10):1769-1771. doi: 10.1002/jmv.25875. Epub 2020 Jun 3.
2
The proximal origin of SARS-CoV-2.
Nat Med. 2020 Apr;26(4):450-452. doi: 10.1038/s41591-020-0820-9.
3
The clinical feature of silent infections of novel coronavirus infection (COVID-19) in Wenzhou.
J Med Virol. 2020 Oct;92(10):1761-1763. doi: 10.1002/jmv.25861. Epub 2020 Jun 16.
4
Disease Control, Civil Liberties, and Mass Testing - Calibrating Restrictions during the Covid-19 Pandemic.
N Engl J Med. 2020 Jul 9;383(2):102-104. doi: 10.1056/NEJMp2007637. Epub 2020 Apr 9.
7
The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients.
J Med Virol. 2020 Jul;92(7):833-840. doi: 10.1002/jmv.25825. Epub 2020 Apr 25.
8
Epidemiological analysis of COVID-19 and practical experience from China.
J Med Virol. 2020 Jul;92(7):755-769. doi: 10.1002/jmv.25813. Epub 2020 Apr 10.
9
Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019.
Clin Infect Dis. 2020 Nov 19;71(16):2027-2034. doi: 10.1093/cid/ciaa344.
10
Detection of SARS-CoV-2 in Different Types of Clinical Specimens.
JAMA. 2020 May 12;323(18):1843-1844. doi: 10.1001/jama.2020.3786.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验