Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Arica, Chile.
J Med Virol. 2020 Oct;92(10):1988-1994. doi: 10.1002/jmv.25929. Epub 2020 May 3.
Coronavirus disease (Covid-19) has reached unprecedented pandemic levels and is affecting almost every country in the world. Ramping up the testing capacity of a country supposes an essential public health response to this new outbreak. A pool testing strategy where multiple samples are tested in a single reverse transcriptase-polymerase chain reaction (RT-PCR) kit could potentially increase a country's testing capacity. The aim of this study is to propose a simple mathematical model to estimate the optimum number of pooled samples according to the relative prevalence of positive tests in a particular healthcare context, assuming that if a group tests negative, no further testing is done whereas if a group tests positive, all the subjects of the group are retested individually. The model predicts group sizes that range from 11 to 3 subjects. For a prevalence of 10% of positive tests, 40.6% of tests can be saved using testing groups of four subjects. For a 20% prevalence, 17.9% of tests can be saved using groups of three subjects. For higher prevalences, the strategy flattens and loses effectiveness. Pool testing individuals for severe acute respiratory syndrome coronavirus 2 is a valuable strategy that could considerably boost a country's testing capacity. However, further studies are needed to address how large these groups can be, without losing sensitivity on the RT-PCR. The strategy best works in settings with a low prevalence of positive tests. It is best implemented in subgroups with low clinical suspicion. The model can be adapted to specific prevalences, generating a tailored to the context implementation of the pool testing strategy.
冠状病毒病(COVID-19)已达到前所未有的大流行水平,几乎影响到世界上每个国家。提高一个国家的检测能力是对这种新爆发的重要公共卫生应对措施。在单个逆转录-聚合酶链反应(RT-PCR)试剂盒中同时检测多个样本的合并检测策略可能会提高一个国家的检测能力。本研究旨在根据特定医疗保健环境中阳性检测的相对流行率,提出一种简单的数学模型来估计最佳的合并样本数量,假设如果一组检测结果为阴性,则无需进一步检测;而如果一组检测结果为阳性,则对该组的所有个体进行单独重新检测。该模型预测的合并样本大小范围为 11 到 3 个个体。在阳性检测率为 10%的情况下,使用 4 个个体的合并检测组可以节省 40.6%的检测量。在阳性检测率为 20%的情况下,使用 3 个个体的合并检测组可以节省 17.9%的检测量。对于更高的阳性检测率,该策略会趋于平稳,失去效果。合并检测严重急性呼吸综合征冠状病毒 2 的个体是一种有价值的策略,可以大大提高一个国家的检测能力。然而,还需要进一步研究如何在不降低 RT-PCR 敏感性的情况下,扩大这些合并检测组的规模。该策略在阳性检测率较低的环境中效果最佳。在临床怀疑程度较低的亚组中实施效果最佳。该模型可以适用于特定的流行率,针对具体情况实施合并检测策略。