Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
J Bacteriol. 2020 Jun 25;202(14). doi: 10.1128/JB.00133-20.
Bacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. polyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacterium has indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype of overexpression rescuing growth of a mutant at high temperatures) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required but that none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network of Inorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation in and identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.
细菌会在应对各种不同的应激条件时合成无机多聚磷酸盐(polyP)。polyP 通过充当蛋白质稳定伴侣、金属螯合剂或调节蛋白质功能等机制来保护细菌。然而,人们对于应激信号如何在细胞内传递以导致多聚磷酸盐积累增加知之甚少。先前在模式肠杆菌中的研究表明,RNA 聚合酶结合调节蛋白 DksA 是应对营养限制应激时合成多聚磷酸盐所必需的。在这项工作中,我着手更详细地研究 DksA 在多聚磷酸盐调节中的作用。我发现,DksA 的过表达会增加细胞内多聚磷酸盐的含量(解释了 过表达在高温下拯救 突变体生长的长期神秘表型),并表征了 DksA 在这个过程中已知功能残基的作用,发现与 RNA 聚合酶的结合是必需的,但 DksA 的其他功能似乎都不是必需的。转录组学揭示了营养限制时全基因组的转录变化,其中许多变化受 DksA 影响,后续实验确定了 DksA 与应激感应替代 sigma 因子 FliA、RpoN 和 RpoE 之间的复杂相互作用,这些因子影响多聚磷酸盐的产生,表明多聚磷酸盐合成的调节与 的多因素应激反应网络密切交织在一起。无机多聚磷酸盐(polyP)是一种古老而广泛保守的生物聚合物,对于不同细菌的应激抗性和发病机制至关重要,但我们并不了解其合成是如何被调节的。在这项工作中,我通过研究转录调节蛋白 DksA 在 中多聚磷酸盐调节中的作用,并发现了之前未知的多聚磷酸盐合成与应激感应替代 sigma 因子 FliA、RpoN 和 RpoE 之间的联系,从而对这一过程有了新的认识。