Suppr超能文献

DksA 与应激响应替代 σ 因子之间的相互作用控制大肠杆菌中无机多聚磷酸盐的积累。

Interactions between DksA and Stress-Responsive Alternative Sigma Factors Control Inorganic Polyphosphate Accumulation in Escherichia coli.

机构信息

Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA

出版信息

J Bacteriol. 2020 Jun 25;202(14). doi: 10.1128/JB.00133-20.

Abstract

Bacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. polyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacterium has indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype of overexpression rescuing growth of a mutant at high temperatures) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required but that none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network of Inorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation in and identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.

摘要

细菌会在应对各种不同的应激条件时合成无机多聚磷酸盐(polyP)。polyP 通过充当蛋白质稳定伴侣、金属螯合剂或调节蛋白质功能等机制来保护细菌。然而,人们对于应激信号如何在细胞内传递以导致多聚磷酸盐积累增加知之甚少。先前在模式肠杆菌中的研究表明,RNA 聚合酶结合调节蛋白 DksA 是应对营养限制应激时合成多聚磷酸盐所必需的。在这项工作中,我着手更详细地研究 DksA 在多聚磷酸盐调节中的作用。我发现,DksA 的过表达会增加细胞内多聚磷酸盐的含量(解释了 过表达在高温下拯救 突变体生长的长期神秘表型),并表征了 DksA 在这个过程中已知功能残基的作用,发现与 RNA 聚合酶的结合是必需的,但 DksA 的其他功能似乎都不是必需的。转录组学揭示了营养限制时全基因组的转录变化,其中许多变化受 DksA 影响,后续实验确定了 DksA 与应激感应替代 sigma 因子 FliA、RpoN 和 RpoE 之间的复杂相互作用,这些因子影响多聚磷酸盐的产生,表明多聚磷酸盐合成的调节与 的多因素应激反应网络密切交织在一起。无机多聚磷酸盐(polyP)是一种古老而广泛保守的生物聚合物,对于不同细菌的应激抗性和发病机制至关重要,但我们并不了解其合成是如何被调节的。在这项工作中,我通过研究转录调节蛋白 DksA 在 中多聚磷酸盐调节中的作用,并发现了之前未知的多聚磷酸盐合成与应激感应替代 sigma 因子 FliA、RpoN 和 RpoE 之间的联系,从而对这一过程有了新的认识。

相似文献

2
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp.
J Bacteriol. 2019 Apr 9;201(9). doi: 10.1128/JB.00664-18. Print 2019 May 1.
3
The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in .
Microbiology (Reading). 2022 Apr;168(4). doi: 10.1099/mic.0.001185.
6
Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli.
Mol Microbiol. 2011 Jan;79(2):375-86. doi: 10.1111/j.1365-2958.2010.07449.x. Epub 2010 Nov 29.
7
Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis.
J Mol Biol. 2015 Nov 6;427(22):3516-3526. doi: 10.1016/j.jmb.2015.09.005. Epub 2015 Sep 10.
9
sigma54-promoter discrimination and regulation by ppGpp and DksA.
J Biol Chem. 2009 Jan 9;284(2):828-38. doi: 10.1074/jbc.M807707200. Epub 2008 Nov 13.
10
Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses.
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):871-883. doi: 10.1016/j.bbagen.2017.01.007. Epub 2017 Jan 7.

引用本文的文献

1
Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in .
mBio. 2025 Feb 5;16(2):e0351124. doi: 10.1128/mbio.03511-24. Epub 2024 Dec 27.
3
The role of metals in hypothiocyanite resistance in .
J Bacteriol. 2024 Aug 22;206(8):e0009824. doi: 10.1128/jb.00098-24. Epub 2024 Jul 17.
4
Ppx1 putative exopolyphosphatase is essential for polyphosphate accumulation in .
Appl Environ Microbiol. 2024 May 21;90(5):e0229023. doi: 10.1128/aem.02290-23. Epub 2024 Apr 15.
5
The role of metals in hypothiocyanite resistance in .
bioRxiv. 2024 Mar 8:2024.03.07.583962. doi: 10.1101/2024.03.07.583962.
6
Polyphosphate kinase regulates LPS structure and polymyxin resistance during starvation in E. coli.
PLoS Biol. 2024 Mar 13;22(3):e3002558. doi: 10.1371/journal.pbio.3002558. eCollection 2024 Mar.
7
The Protein Scaffolding Functions of Polyphosphate.
J Mol Biol. 2024 Jul 15;436(14):168504. doi: 10.1016/j.jmb.2024.168504. Epub 2024 Feb 27.
8
The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in .
Microbiology (Reading). 2022 Apr;168(4). doi: 10.1099/mic.0.001185.
9
Polyphosphate Polymerase Knockout Increases Stress Resistance of Cells.
Biology (Basel). 2021 May 30;10(6):487. doi: 10.3390/biology10060487.

本文引用的文献

2
Trouble is coming: Signaling pathways that regulate general stress responses in bacteria.
J Biol Chem. 2019 Aug 2;294(31):11685-11700. doi: 10.1074/jbc.REV119.005593. Epub 2019 Jun 13.
3
DksA-RNA polymerase interactions support new origin formation and DNA repair in Escherichia coli.
Mol Microbiol. 2019 May;111(5):1382-1397. doi: 10.1111/mmi.14227. Epub 2019 Mar 22.
4
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp.
J Bacteriol. 2019 Apr 9;201(9). doi: 10.1128/JB.00664-18. Print 2019 May 1.
5
Assaying for Inorganic Polyphosphate in Bacteria.
J Vis Exp. 2019 Jan 21(143). doi: 10.3791/58818.
6
Affinity-based capture and identification of protein effectors of the growth regulator ppGpp.
Nat Chem Biol. 2019 Feb;15(2):141-150. doi: 10.1038/s41589-018-0183-4. Epub 2018 Dec 17.
7
DksA-DnaJ redox interactions provide a signal for the activation of bacterial RNA polymerase.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11780-E11789. doi: 10.1073/pnas.1813572115. Epub 2018 Nov 14.
8
Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling.
J Biol Chem. 2019 Feb 8;294(6):2109-2120. doi: 10.1074/jbc.REV118.002806. Epub 2018 Nov 6.
10
Transcriptional Responses to ppGpp and DksA.
Annu Rev Microbiol. 2018 Sep 8;72:163-184. doi: 10.1146/annurev-micro-090817-062444.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验