Suppr超能文献

通过综合生物信息学分析鉴定从低级别胶质瘤向继发性胶质母细胞瘤转变的生物标志物

Identification of biomarkers for the transition from low-grade glioma to secondary glioblastoma by an integrated bioinformatic analysis.

作者信息

Zhao Liang, Zhang Jiayue, Liu Zhiyuan, Zhao Peng

机构信息

Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University Nanjing, Jiangsu, China.

出版信息

Am J Transl Res. 2020 Apr 15;12(4):1222-1238. eCollection 2020.

Abstract

Secondary glioblastoma (sGBM) is a type of glioblastoma multiforme that evolves from low-grade glioma (LGG). However, the mechanism of this transition still remains poorly understood. In this study, we used weighted gene co-expression network analysis (WGCNA) on the gene expression profiles of glioma samples from the Chinese Glioma Genome Atlas (CGGA) database to identify key genetic module related to distinguish histological characteristics. Here, the brown module was highly correlated with histological characteristics and was selected as the hub module. By applying functional annotation analysis, we found that biological processes related to the cell-cycle and DNA-replication were enriched in the genes of the brown module. After constructing a protein-protein interaction (PPI) network, validation of differential gene expression, and survival analyses, we ultimately identified five hub genes: CCNB2 (Cyclin B2), KIF2C (Kinesin Family Member 2C), CDC20 (Cell Division Cycle 20), TPX2 (TPX2 Microtubule Nucleation Factor), and PLK1 (Polo Like Kinase 1). In addition, a computational risk model was developed for predicting the clinical outcomes of sGBM patients by combining gene expression levels. This gene signature was demonstrated to be an independent predictor of survival by univariate and multivariable Cox regression analysis. Finally, we used the Genomics of Drug Sensitivity in Cancer (GDSC) database to predict the responses of sGBM patients to routine chemotherapeutic drugs. Patients from the high-risk group were more sensitive to common chemotherapies during clinical treatment. Our findings based on comprehensive analyses might advance the understanding of sGBM transition and aid the development of novel biomarkers for diagnosing and predicting the survival of sGBM patients.

摘要

继发性胶质母细胞瘤(sGBM)是一种多形性胶质母细胞瘤,由低级别胶质瘤(LGG)演变而来。然而,这种转变的机制仍知之甚少。在本研究中,我们对来自中国胶质瘤基因组图谱(CGGA)数据库的胶质瘤样本基因表达谱进行加权基因共表达网络分析(WGCNA),以识别与区分组织学特征相关的关键基因模块。在此,棕色模块与组织学特征高度相关,并被选为核心模块。通过功能注释分析,我们发现棕色模块的基因中富集了与细胞周期和DNA复制相关的生物学过程。构建蛋白质-蛋白质相互作用(PPI)网络、验证差异基因表达并进行生存分析后,我们最终确定了五个核心基因:CCNB2(细胞周期蛋白B2)、KIF2C(驱动蛋白家族成员2C)、CDC20(细胞分裂周期20)、TPX2(TPX2微管成核因子)和PLK1(波罗样激酶1)。此外,通过结合基因表达水平,开发了一种计算风险模型来预测sGBM患者的临床结局。单变量和多变量Cox回归分析表明,这种基因特征是生存的独立预测因子。最后,我们使用癌症药物敏感性基因组学(GDSC)数据库来预测sGBM患者对常规化疗药物的反应。高危组患者在临床治疗中对常用化疗更敏感。我们基于综合分析的研究结果可能会增进对sGBM转变的理解,并有助于开发用于诊断和预测sGBM患者生存的新型生物标志物。

相似文献

5
Four novel biomarkers for bladder cancer identified by weighted gene coexpression network analysis.
J Cell Physiol. 2019 Aug;234(10):19073-19087. doi: 10.1002/jcp.28546. Epub 2019 Mar 29.
9
Identification of potential biomarkers related to glioma survival by gene expression profile analysis.
BMC Med Genomics. 2019 Mar 20;11(Suppl 7):34. doi: 10.1186/s12920-019-0479-6.
10
Novel Biomarkers Associated With Progression and Prognosis of Bladder Cancer Identified by Co-expression Analysis.
Front Oncol. 2019 Oct 11;9:1030. doi: 10.3389/fonc.2019.01030. eCollection 2019.

引用本文的文献

1
Genetic feature selection algorithm as an efficient glioma grade classifier.
Sci Rep. 2025 May 3;15(1):15497. doi: 10.1038/s41598-024-83879-2.
2
Multi-omics analysis identifies novels genes involved in glioma prognosis.
Sci Rep. 2025 Feb 17;15(1):5806. doi: 10.1038/s41598-025-90658-0.
3
Upregulated expression of is associated with progression of pancreatic cancer.
J Gastrointest Oncol. 2024 Feb 29;15(1):435-457. doi: 10.21037/jgo-23-979. Epub 2024 Feb 20.
5
PLEKHA4 is a novel prognostic biomarker that reshapes the tumor microenvironment in lower-grade glioma.
Front Immunol. 2023 Sep 25;14:1128244. doi: 10.3389/fimmu.2023.1128244. eCollection 2023.
6
The Oncogenic Role of Cyclin-Dependent Kinase Inhibitor 2C in Lower-Grade Glioma.
J Mol Neurosci. 2023 Jun;73(6):327-344. doi: 10.1007/s12031-023-02120-3. Epub 2023 May 24.
9
The Role of Network Science in Glioblastoma.
Cancers (Basel). 2021 Mar 2;13(5):1045. doi: 10.3390/cancers13051045.
10

本文引用的文献

1
HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer.
Am J Transl Res. 2019 Nov 15;11(11):7035-7048. eCollection 2019.
2
Pan-cancer analysis identifies telomerase-associated signatures and cancer subtypes.
Mol Cancer. 2019 Jun 10;18(1):106. doi: 10.1186/s12943-019-1035-x.
4
Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics.
Mol Cancer Ther. 2016 Jul;15(7):1427-35. doi: 10.1158/1535-7163.MCT-15-0897. Epub 2016 Jun 21.
5
Clonal evolution of glioblastoma under therapy.
Nat Genet. 2016 Jul;48(7):768-76. doi: 10.1038/ng.3590. Epub 2016 Jun 6.
7
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.
Acta Neuropathol. 2016 Jun;131(6):803-20. doi: 10.1007/s00401-016-1545-1. Epub 2016 May 9.
8
CCNB2 overexpression is a poor prognostic biomarker in Chinese NSCLC patients.
Biomed Pharmacother. 2015 Aug;74:222-7. doi: 10.1016/j.biopha.2015.08.004. Epub 2015 Aug 28.
9
A CDC20-APC/SOX2 Signaling Axis Regulates Human Glioblastoma Stem-like Cells.
Cell Rep. 2015 Jun 23;11(11):1809-21. doi: 10.1016/j.celrep.2015.05.027. Epub 2015 Jun 11.
10
The evidence of glioblastoma heterogeneity.
Sci Rep. 2015 Jan 27;5:7979. doi: 10.1038/srep07979.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验