Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.).
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (A.A., T.C.M., L.V., S.R.F., H.B.-O.); Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.); and Cardiovascular Research, Novo Nordisk A/S, Måløv, Denmark (J.L.H.)
Mol Pharmacol. 2020 Jul;98(1):49-60. doi: 10.1124/mol.119.119032. Epub 2020 May 1.
Negative allosteric modulation of the metabotropic glutamate 5 (mGlu) receptor has emerged as a potential strategy for the treatment of neurologic disorders. Despite the success in preclinical studies, many mGlu negative allosteric modulators (NAMs) that have reached clinical trials failed due to lack of efficacy. In this study, we provide a detailed in vitro pharmacological characterization of nine clinically and preclinically tested NAMs. We evaluated inhibition of l-glutamate-induced signaling with Ca mobilization, inositol monophosphate (IP) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and real-time receptor internalization assays on rat mGlu expressed in HEK293A cells. Moreover, we determined association rates (k) and dissociation rates (k), as well as NAM affinities with [H]methoxy-PEPy binding experiments. k and k values varied greatly between the nine NAMs (34- and 139-fold, respectively) resulting in long receptor residence times (>400 min) for basimglurant and mavoglurant, medium residence times (10-30 min) for AZD2066, remeglurant, and (RS)-remeglurant, and low residence times (<10 mins) for dipraglurant, F169521, F1699611, and STX107. We found that all NAMs inhibited l-glutamate-induced mGlu receptor internalization, generally with a similar potency to IP accumulation and ERK1/2 phosphorylation, whereas Ca mobilization was less potently inhibited. Operational model of allosterism analyses revealed that dipraglurant and (RS)-remeglurant were biased toward (affinity) receptor internalization and away (cooperativity) from the ERK1/2 phosphorylation pathway, respectively. Our study is the first to measure mGlu NAM binding kinetics and negative allosteric modulation of mGlu receptor internalization and adds significant new knowledge about the molecular pharmacology of a diverse range of clinically relevant NAMs. SIGNIFICANCE STATEMENT: The metabotropic glutamate 5 (mGlu) receptor is important in many brain functions and implicated in several neurological pathologies. Negative allosteric modulators (NAMs) have shown promising results in preclinical models but have so far failed in human clinical trials. Here we provide the most comprehensive and comparative molecular pharmacological study to date of nine preclinically/clinically tested NAMs at the mGlu receptor, which is also the first study to measure ligand binding kinetics and negative allosteric modulation of mGlu receptor internalization.
负变构调节代谢型谷氨酸 5(mGlu)受体已成为治疗神经疾病的潜在策略。尽管在临床前研究中取得了成功,但许多已进入临床试验的 mGlu 负变构调节剂(NAM)由于疗效不佳而失败。在这项研究中,我们对 9 种临床和临床前测试的 NAMs 进行了详细的体外药理学特征描述。我们评估了在大鼠 mGlu 表达的 HEK293A 细胞中,通过 Ca 动员、肌醇单磷酸(IP)积累、细胞外信号调节激酶 1/2(ERK1/2)磷酸化和实时受体内化测定,对 l-谷氨酸诱导的信号的抑制作用。此外,我们通过 [H]甲氧基-PEPy 结合实验确定了结合率(k)和解离率(k)以及 NAM 亲和力。在这 9 种 NAMs 之间,k 和 k 值差异很大(分别为 34 倍和 139 倍),导致 basimglurant 和 mavoglurant 的受体停留时间很长(>400 分钟),AZD2066、remeglurant 和(RS)-remeglurant 的受体停留时间中等(10-30 分钟),而 dipraglurant、F169521、F1699611 和 STX107 的受体停留时间较短(<10 分钟)。我们发现,所有 NAMs 均抑制 l-谷氨酸诱导的 mGlu 受体内化,通常与 IP 积累和 ERK1/2 磷酸化的抑制作用相似,而 Ca 动员的抑制作用较弱。变构作用操作模型分析表明,dipraglurant 和(RS)-remeglurant 分别偏向于(亲和力)受体内化和远离(协同性)ERK1/2 磷酸化途径。我们的研究首次测量了 mGlu NAM 的结合动力学和 mGlu 受体内化的负变构调节,并为一系列临床相关 NAMs 的分子药理学提供了重要的新知识。意义声明:代谢型谷氨酸 5(mGlu)受体在许多大脑功能中很重要,并且与几种神经病理学有关。负变构调节剂(NAM)在临床前模型中显示出有希望的结果,但迄今为止在人体临床试验中失败。在这里,我们提供了迄今为止对 mGlu 受体进行的最全面和最具比较性的分子药理学研究,也是首次测量配体结合动力学和 mGlu 受体内化的负变构调节的研究。