DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.
DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK.
Trends Pharmacol Sci. 2020 Jun;41(6):390-408. doi: 10.1016/j.tips.2020.03.004. Epub 2020 Apr 28.
During drug discovery and prior to the first human dose of a novel candidate drug, the pharmacokinetic (PK) behavior of the drug in humans is predicted from preclinical data. This helps to inform the likelihood of achieving therapeutic exposures in early clinical development. Once clinical data are available, the observed human PK are compared with predictions, providing an opportunity to assess and refine prediction methods. Application of best practice in experimental data generation and predictive methodologies, and a focus on robust mechanistic understanding of the candidate drug disposition properties before nomination to clinical development, have led to maximizing the probability of successful PK predictions so that 83% of AstraZeneca drug development projects progress in the clinic with no PK issues; and 71% of key PK parameter predictions [64% of area under the curve (AUC) predictions; 78% of maximum concentration (C) predictions; and 70% of half-life predictions] are accurate to within twofold. Here, we discuss methods to predict human PK used by AstraZeneca, how these predictions are assessed and what can be learned from evaluating the predictions for 116 candidate drugs.
在药物发现以及首例新型候选药物人体给药之前,通常根据临床前数据预测药物在人体中的药代动力学(PK)行为。这有助于了解早期临床开发中实现治疗性暴露的可能性。一旦获得临床数据,就会将观察到的人体 PK 与预测结果进行比较,从而有机会评估和改进预测方法。在提名进入临床开发之前,通过最佳实践在实验数据生成和预测方法中的应用,以及对候选药物处置特性的稳健机制理解的关注,提高了 PK 预测成功的可能性,使 83%的阿斯利康药物开发项目在临床阶段没有 PK 问题;71%的关键 PK 参数预测[64%的曲线下面积(AUC)预测;78%的最大浓度(C)预测;70%的半衰期预测]的准确性在两倍以内。在这里,我们讨论了阿斯利康使用的预测人体 PK 的方法,如何评估这些预测以及从评估 116 种候选药物的预测中可以学到什么。