Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Nature. 2020 Aug;584(7819):154-156. doi: 10.1038/s41586-020-2368-8. Epub 2020 May 21.
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses an RNA-dependent RNA polymerase (RdRp) for the replication of its genome and the transcription of its genes. Here we present a cryo-electron microscopy structure of the SARS-CoV-2 RdRp in an active form that mimics the replicating enzyme. The structure comprises the viral proteins non-structural protein 12 (nsp12), nsp8 and nsp7, and more than two turns of RNA template-product duplex. The active-site cleft of nsp12 binds to the first turn of RNA and mediates RdRp activity with conserved residues. Two copies of nsp8 bind to opposite sides of the cleft and position the second turn of RNA. Long helical extensions in nsp8 protrude along exiting RNA, forming positively charged 'sliding poles'. These sliding poles can account for the known processivity of RdRp that is required for replicating the long genome of coronaviruses. Our results enable a detailed analysis of the inhibitory mechanisms that underlie the antiviral activity of substances such as remdesivir, a drug for the treatment of coronavirus disease 2019 (COVID-19).
新型冠状病毒严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)利用 RNA 依赖性 RNA 聚合酶(RdRp)复制其基因组并转录其基因。在这里,我们展示了一种模拟复制酶的 SARS-CoV-2 RdRp 的活性形式的冷冻电子显微镜结构。该结构包括病毒蛋白非结构蛋白 12(nsp12)、nsp8 和 nsp7,以及超过两圈的 RNA 模板-产物双链。nsp12 的活性位点裂缝结合到 RNA 的第一圈,并通过保守残基介导 RdRp 活性。两个 nsp8 拷贝结合到裂缝的相对侧,并定位 RNA 的第二圈。nsp8 中的长螺旋延伸物沿着正在退出的 RNA 突出,形成带正电荷的“滑动极”。这些滑动极可以解释 RdRp 的已知的连续性,这是复制冠状病毒长基因组所必需的。我们的结果使我们能够详细分析抑制机制,这些机制是瑞德西韦等物质的抗病毒活性的基础,瑞德西韦是一种治疗 2019 年冠状病毒病(COVID-19)的药物。