Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
Cell. 2020 Jun 25;181(7):1518-1532.e14. doi: 10.1016/j.cell.2020.05.005. Epub 2020 Jun 3.
The rise of antibiotic resistance and declining discovery of new antibiotics has created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing methicillin-resistant Staphylococcus aureus (MRSA) persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrhoeae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.
抗生素耐药性的上升和新抗生素发现的减少已经造成了全球健康危机。特别值得关注的是,几十年来,没有新的抗生素类别被批准用于治疗革兰氏阴性病原体。在这里,我们描述了一种化合物 SCH-79797,它通过独特的双重作用机制(MoA)杀死革兰氏阴性和革兰氏阳性细菌,其耐药频率低得无法检测。为了描述其 MoA,我们结合了定量成像、蛋白质组学、遗传学、代谢组学和基于细胞的测定方法。该研究表明,SCH-79797 有两个独立的细胞靶点,叶酸代谢和细菌膜完整性,并且在杀死耐甲氧西林金黄色葡萄球菌(MRSA)持久性方面优于联合治疗。基于 SCH-79797 的分子核心,我们开发了一种衍生物 Irresistin-16,其效力增加,并在小鼠阴道感染模型中显示了对淋病奈瑟菌的疗效。这一有前景的抗生素先导化合物表明,将多种 MoA 结合到单个化学支架上可能是一种针对具有挑战性的细菌病原体的未被充分认识的方法。