Suppr超能文献

探索蛋白酶体的蛋白水解机制。

Exploring the Proteolysis Mechanism of the Proteasomes.

机构信息

Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave., Los Angeles, California 90089-1062, United States.

出版信息

J Phys Chem B. 2020 Jul 9;124(27):5626-5635. doi: 10.1021/acs.jpcb.0c04435. Epub 2020 Jun 25.

Abstract

The proteasome is a key protease in the eukaryotic cells which is responsible for various important cellular processes such as the control of the cell cycle, immune responses, protein homeostasis, inflammation, apoptosis, and the response to proteotoxic stress. Acting as a major molecular machine for protein degradation, proteasome first identifies damaged or obsolete regulatory proteins by attaching ubiquitin chains and subsequently utilizes conserved pore loops of the heterohexameric ring of AAA+ (ATPases associated with diverse cellular activities) to pull and mechanically unfold and translocate the misfolded protein to the active site for proteolysis. A detailed knowledge of the reaction mechanism for this proteasomal proteolysis is of central importance, both for fundamental understanding and for drug discovery. The present study investigates the mechanism of the proteolysis by the proteasome with full consideration of the protein's flexibility and its impact on the reaction free energy. Major attention is paid to the role of the protein electrostatics in determining the activation barriers. The reaction mechanism is studied by considering a small artificial fluorogenic peptide substrate (Suc-LLVY-AMC) and evaluating the activation barriers and reaction free energies for the acylation and deacylation steps, by using the empirical valence bond method. Our results shed light on the proteolysis mechanism and thus should be important for further studies of the proteasome action.

摘要

蛋白酶体是真核细胞中的一种关键蛋白酶,负责各种重要的细胞过程,如细胞周期的控制、免疫反应、蛋白质稳态、炎症、细胞凋亡以及对蛋白毒性应激的反应。作为蛋白质降解的主要分子机器,蛋白酶体首先通过连接泛素链来识别受损或过时的调节蛋白,然后利用 AAA+(与多种细胞活动相关的 ATP 酶)异六聚体环的保守孔环来拉动、机械展开并将错误折叠的蛋白质转运到活性位点进行蛋白水解。全面考虑蛋白质的灵活性及其对反应自由能的影响,深入了解这种蛋白酶体蛋白水解的反应机制,对于基础理解和药物发现都至关重要。本研究通过使用经验价键方法,考虑一个小型人工荧光肽底物(Suc-LLVY-AMC),评估酰化和脱酰步骤的激活势垒和反应自由能,来研究蛋白酶体的蛋白水解机制。我们的研究结果阐明了蛋白水解机制,因此对于进一步研究蛋白酶体的作用应该是重要的。

相似文献

1
Exploring the Proteolysis Mechanism of the Proteasomes.
J Phys Chem B. 2020 Jul 9;124(27):5626-5635. doi: 10.1021/acs.jpcb.0c04435. Epub 2020 Jun 25.
6
Proteasomes: unfoldase-assisted protein degradation machines.
Biol Chem. 2019 Dec 18;401(1):183-199. doi: 10.1515/hsz-2019-0344.
7
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
8
Ubiquitin recognition by the proteasome.
J Biochem. 2017 Feb 1;161(2):113-124. doi: 10.1093/jb/mvw091.
9
Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome.
J Biol Chem. 2016 Aug 26;291(35):18547-61. doi: 10.1074/jbc.M116.720151. Epub 2016 Jul 12.
10
The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis.
J Biol Chem. 2017 Jun 9;292(23):9830-9839. doi: 10.1074/jbc.M116.763128. Epub 2017 Apr 17.

引用本文的文献

1
The Role of the Ubiquitin System in Eye Diseases.
Life (Basel). 2025 Mar 20;15(3):504. doi: 10.3390/life15030504.
4
Electrostatic Preorganization in Three Distinct Heterogeneous Proteasome β-Subunits.
ACS Catal. 2024 Oct 2;14(20):15237-15249. doi: 10.1021/acscatal.4c04964. eCollection 2024 Oct 18.
7
Clickable Probes for Pathogen Proteasomes: Synthesis and Applications.
ACS Omega. 2024 Aug 2;9(32):34829-34840. doi: 10.1021/acsomega.4c04316. eCollection 2024 Aug 13.
8
Simulating the directional translocation of a substrate by the AAA+ motor in the 26S proteasome.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104245118.
9
Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies.
Int J Mol Sci. 2021 Mar 22;22(6):3232. doi: 10.3390/ijms22063232.
10
A new class of α-ketoamide derivatives with potent anticancer and anti-SARS-CoV-2 activities.
Eur J Med Chem. 2021 Apr 5;215:113267. doi: 10.1016/j.ejmech.2021.113267. Epub 2021 Feb 10.

本文引用的文献

1
The structure of the PA28-20S proteasome complex from Plasmodium falciparum and implications for proteostasis.
Nat Microbiol. 2019 Nov;4(11):1990-2000. doi: 10.1038/s41564-019-0524-4. Epub 2019 Aug 5.
2
Structural Snapshots of 26S Proteasome Reveal Tetraubiquitin-Induced Conformations.
Mol Cell. 2019 Mar 21;73(6):1150-1161.e6. doi: 10.1016/j.molcel.2019.01.018. Epub 2019 Feb 18.
3
Role of Diffusion in Unfolding and Translocation of Multidomain Titin I27 Substrates by a Clp ATPase Nanomachine.
J Phys Chem B. 2019 Mar 28;123(12):2623-2635. doi: 10.1021/acs.jpcb.8b10282. Epub 2019 Feb 12.
4
Theoretical study of the inhibition mechanism of human 20S proteasome by dihydroeponemycin.
Eur J Med Chem. 2019 Feb 15;164:399-407. doi: 10.1016/j.ejmech.2018.12.062. Epub 2018 Dec 25.
5
Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):534-539. doi: 10.1073/pnas.1817752116. Epub 2018 Dec 17.
6
Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
Nature. 2019 Jan;565(7737):49-55. doi: 10.1038/s41586-018-0736-4. Epub 2018 Nov 12.
7
Substrate-engaged 26 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation.
Science. 2018 Nov 30;362(6418). doi: 10.1126/science.aav0725. Epub 2018 Oct 11.
8
Regulation of proteasome assembly and activity in health and disease.
Nat Rev Mol Cell Biol. 2018 Nov;19(11):697-712. doi: 10.1038/s41580-018-0040-z.
10
Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms.
J Phys Chem B. 2017 Jul 27;121(29):7108-7121. doi: 10.1021/acs.jpcb.7b05963. Epub 2017 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验