Suppr超能文献

CoMut:通过共突变图可视化整合的分子信息。

CoMut: visualizing integrated molecular information with comutation plots.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.

Cancer Program, Broad Institute of Harvard and MIT, Cambridge, 02142 MA, USA.

出版信息

Bioinformatics. 2020 Aug 1;36(15):4348-4349. doi: 10.1093/bioinformatics/btaa554.

Abstract

MOTIVATION

Large-scale sequencing studies have created a need to succinctly visualize genomic characteristics of patient cohorts linked to widely variable phenotypic information. This is often done by visualizing the co-occurrence of variants with comutation plots. Current tools lack the ability to create highly customizable and publication quality comutation plots from arbitrary user data.

RESULTS

We developed CoMut, a stand-alone, object-oriented Python package that creates comutation plots from arbitrary input data, including categorical data, continuous data, bar graphs, side bar graphs and data that describes relationships between samples.

AVAILABILITY AND IMPLEMENTATION

The CoMut package is open source and is available at https://github.com/vanallenlab/comut under the MIT License, along with documentation and examples. A no installation, easy-to-use implementation is available on Google Colab (see GitHub).

摘要

动机

大规模测序研究需要简洁地可视化与广泛变化的表型信息相关联的患者队列的基因组特征。这通常通过可视化变异与共突变图的共现来完成。当前的工具缺乏从任意用户数据创建高度可定制和出版质量共突变图的能力。

结果

我们开发了 CoMut,这是一个独立的、面向对象的 Python 包,它可以从任意输入数据创建共突变图,包括分类数据、连续数据、柱状图、侧边柱状图和描述样本之间关系的数据。

可用性和实现

CoMut 包是开源的,并可在 MIT 许可证下在 https://github.com/vanallenlab/comut 获得,同时还提供文档和示例。在 Google Colab 上也提供了一个无需安装、易于使用的实现(请参见 GitHub)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b85/7520041/465de723b6d6/btaa554f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验