Suppr超能文献

受蜘蛛丝启发的基于自维持静电纳米结构网络的 PM 过滤器。

Spider-Web-Inspired PM Filters Based on Self-Sustained Electrostatic Nanostructured Networks.

机构信息

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.

Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.

出版信息

Adv Mater. 2020 Jul;32(29):e2002361. doi: 10.1002/adma.202002361. Epub 2020 Jun 8.

Abstract

Particulate matter (PM) pollution has become a serious public health issue, especially with outbreaks of emerging infectious diseases. However, most present filters are bulky, opaque, and show low-efficiency PM /pathogen interception and inevitable trade-off between PM removal and air permeability. Here, a unique electrospraying-netting technique is used to create spider-web-inspired network generator (SWING) air filters. Manipulation of the dynamic of the Taylor cone and phase separation of its ejected droplets enable the generation of 2D self-charging nanostructured networks on a large scale. The resultant SWING filters show exceptional long-range electrostatic property driven by aeolian vibration, enabling self-sustained PM adhesion. Combined with their Steiner-tree-structured pores (size 200-300 nm) consisting of nanowires (diameter 12 nm), the SWING filters exhibit high efficiency (>99.995% PM removal), low air resistance (<0.09% atmosphere pressure), high transparency (>82%), and remarkable bioprotective activity for biohazard pathogens. This work may shed light on designing new fibrous materials for environmental and energy applications.

摘要

颗粒物 (PM) 污染已成为严重的公共卫生问题,尤其是在新发传染病爆发时。然而,目前大多数的过滤器体积庞大、不透明,对 PM/病原体的截留效率低,且在 PM 去除率和透气性之间不可避免地存在权衡。在这里,我们使用独特的静电纺丝网技术来制造仿蛛网结构的网络生成器 (SWING) 空气过滤器。通过控制泰勒锥的动力学和喷射液滴的相分离,可以在较大范围内生成二维自充电纳米结构网络。所得的 SWING 过滤器具有出色的长程静电特性,能够在风力振动的作用下实现自维持的 PM 吸附。此外,SWING 过滤器的 Steiner 树状结构的孔(尺寸为 200-300nm)由纳米线(直径 12nm)组成,因此它具有高效(>99.995%的 PM 去除率)、低空气阻力(<0.09%大气压)、高透明度(>82%)和对生物危害病原体的显著防护性能。这项工作可能为设计用于环境和能源应用的新型纤维材料提供思路。

相似文献

1
Spider-Web-Inspired PM Filters Based on Self-Sustained Electrostatic Nanostructured Networks.
Adv Mater. 2020 Jul;32(29):e2002361. doi: 10.1002/adma.202002361. Epub 2020 Jun 8.
2
Highly Efficient, Transparent, and Multifunctional Air Filters Using Self-Assembled 2D Nanoarchitectured Fibrous Networks.
ACS Nano. 2019 Nov 26;13(11):13501-13512. doi: 10.1021/acsnano.9b07293. Epub 2019 Nov 4.
3
Highly Efficient Fabrication of Biomimetic Nanoscaled Tendrils for High-Performance PM Air Filters.
Nano Lett. 2024 Jan 31;24(4):1385-1391. doi: 10.1021/acs.nanolett.3c04571. Epub 2024 Jan 17.
5
Dual-Network Structured Nanofibrous Membranes with Superelevated Interception Probability for Extrafine Particles.
ACS Appl Mater Interfaces. 2023 Mar 22;15(11):15036-15046. doi: 10.1021/acsami.3c01385. Epub 2023 Mar 12.
6
Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants.
Nanotechnology. 2019 Jan 4;30(1):015703. doi: 10.1088/1361-6528/aae611. Epub 2018 Oct 4.
7
Engineering self-assembled 2D nano-network membranes through hierarchical phase separation for efficient air filtration.
J Colloid Interface Sci. 2024 Mar;657:463-471. doi: 10.1016/j.jcis.2023.12.014. Epub 2023 Dec 4.
8
Multi-Scale Nanoarchitectured Fibrous Networks for High-Performance, Self-Sterilization, and Recyclable Face Masks.
Small. 2022 Jan;18(2):e2105570. doi: 10.1002/smll.202105570. Epub 2021 Nov 30.
9
Two-Dimensional Piezoelectric Nanofibrous Webs by Self-Polarized Assembly for High-Performance PM Filtration.
ACS Nano. 2024 Jul 2;18(26):16895-16904. doi: 10.1021/acsnano.4c02731. Epub 2024 Jun 21.
10
Free-Standing Polyurethane Nanofiber/Nets Air Filters for Effective PM Capture.
Small. 2017 Dec;13(46). doi: 10.1002/smll.201702139. Epub 2017 Oct 17.

引用本文的文献

1
Nanofibrillated collagen fiber networks for enhanced air purification.
Nat Commun. 2025 Jul 24;16(1):6823. doi: 10.1038/s41467-025-62146-6.
2
Sustainable biomass-based filter for high-efficiency PM filtration.
Nat Commun. 2025 Jul 17;16(1):6596. doi: 10.1038/s41467-025-61863-2.
3
Self-Feeding Needleless Electrospinning of Cross-Linked Nanofibrous Materials for High-Performance Air Filtration.
Small. 2025 Aug;21(33):e2505585. doi: 10.1002/smll.202505585. Epub 2025 Jun 18.
6
Electrospun PLA/DTAC Bicomponent Membranes for Low-Resistance and Antibacterial Air Filtration.
Polymers (Basel). 2025 Mar 14;17(6):767. doi: 10.3390/polym17060767.
7
8
Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review.
Geroscience. 2025 Feb;47(1):543-571. doi: 10.1007/s11357-024-01379-7. Epub 2024 Oct 11.
10
Bicomponent core/sheath melt-blown fibers for air filtration with ultra-low resistance.
RSC Adv. 2024 Apr 29;14(20):14100-14113. doi: 10.1039/d4ra02174f. eCollection 2024 Apr 25.

本文引用的文献

1
The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak.
Science. 2020 Apr 24;368(6489):395-400. doi: 10.1126/science.aba9757. Epub 2020 Mar 6.
2
A new coronavirus associated with human respiratory disease in China.
Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3.
3
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.
4
Highly Efficient, Transparent, and Multifunctional Air Filters Using Self-Assembled 2D Nanoarchitectured Fibrous Networks.
ACS Nano. 2019 Nov 26;13(11):13501-13512. doi: 10.1021/acsnano.9b07293. Epub 2019 Nov 4.
5
Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning.
Nat Commun. 2019 May 16;10(1):2177. doi: 10.1038/s41467-019-10218-9.
7
Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review.
J Aerosol Sci. 2018 Nov;125:164-181. doi: 10.1016/j.jaerosci.2018.04.002. Epub 2018 Apr 9.
8
Electroactive poly(vinylidene fluoride)-based structures for advanced applications.
Nat Protoc. 2018 Apr;13(4):681-704. doi: 10.1038/nprot.2017.157. Epub 2018 Mar 15.
10
Opportunities and challenges in modeling emerging infectious diseases.
Science. 2017 Jul 14;357(6347):149-152. doi: 10.1126/science.aam8335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验