Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China.
Shanghai Pudong New Area Mental Health Center affiliated with Tongji University School of Medicine, 165 Sanlin Road, Shanghai 200124, China.
Glycobiology. 2021 Jan 9;31(1):69-80. doi: 10.1093/glycob/cwaa052.
Coronaviruses hijack human enzymes to assemble the sugar coat on their spike glycoproteins. The mechanisms by which human antibodies may recognize the antigenic viral peptide epitopes hidden by the sugar coat are unknown. Glycosylation by insect cells differs from the native form produced in human cells, but insect cell-derived influenza vaccines have been approved by the US Food and Drug Administration. In this study, we analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1-4 insect cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired tandem mass spectrometry (MS/MS) spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of spike proteins according to cryogenic electron microscopy and homolog-modeled structures and available antibodies that bind to SARS-CoV-1. All 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the spike receptor-binding domain of SARS-CoV-2, except YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ, similar to a region FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ in SARS-CoV-1. Other surface-exposed domains include those located on central helix, connecting region, heptad repeats and N-terminal domain. Because the majority of antibody paratopes bind to the peptide portion with or without sugar modification, we propose a snake-catching model for predicted paratopes: a minimal length of peptide is first clamped by a paratope and sugar modifications close to the peptide either strengthen or do not hinder the binding.
冠状病毒劫持人体酶来组装其刺突糖蛋白的糖衣。人体抗体识别隐藏在糖衣下的抗原性病毒肽表位的机制尚不清楚。昆虫细胞的糖基化与在人体细胞中产生的天然形式不同,但昆虫细胞衍生的流感疫苗已获得美国食品和药物管理局的批准。在这项研究中,我们通过胰蛋白酶和糜蛋白酶消化后进行质谱分析,分析了从 BTI-Tn-5B1-4 昆虫细胞分泌的重组严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 刺突蛋白。我们获得了所有 22 个预测的 N-糖基化位点糖肽的串联质谱 (MS/MS) 光谱。我们根据低温电子显微镜和同源建模结构以及与 SARS-CoV-1 结合的现有抗体进一步分析了刺突蛋白的表面可及性。SARS-CoV-2 的所有 22 个 N-糖基化位点均被高甘露糖 N-聚糖修饰。MS/MS 片段清楚地确定了糖肽的身份。聚糖的电子密度覆盖了 SARS-CoV-2 受体结合域的大部分区域,除了 YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ,与 SARS-CoV-1 中的一个区域 FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ 相似。其他暴露于表面的结构域包括位于中央螺旋、连接区、七肽重复和 N 端结构域上的结构域。由于大多数抗体互补决定区结合带或不带糖修饰的肽部分,我们提出了一个预测互补决定区的捕蛇模型:首先由互补决定区夹住一个最小长度的肽,糖修饰靠近肽,要么加强,要么不阻碍结合。