Suppr超能文献

高通量甲基转移酶测定法的优化及其在小分子抑制剂发现中的应用。

Optimization of High-Throughput Methyltransferase Assays for the Discovery of Small Molecule Inhibitors.

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States.

Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States.

出版信息

ACS Comb Sci. 2020 Aug 10;22(8):422-432. doi: 10.1021/acscombsci.0c00077. Epub 2020 Jun 27.

Abstract

Methyltransferases (MTases) play diverse roles in cellular processes. Aberrant methylation levels have been implicated in many diseases, indicating the need for the identification and development of small molecule inhibitors for each MTase. Specific inhibitors can serve as probes to investigate the function and validate therapeutic potential for the respective MTase. High-throughput screening (HTS) is a powerful method to identify initial hits for further optimization. Here, we report the development of a fluorescence-based MTase assay and compare this format with the recently developed MTase-Glo luminescence assay for application in HTS. Using protein N-terminal methyltransferase 1 (NTMT1) as a model system, we miniaturized to 1536-well quantitative HTS format. Through a pilot screen of 1428 pharmacologically active compounds and subsequent validation, we discovered that MTase-Glo produced lower false positive rates than the fluorescence-based MTase assay. Nevertheless, both assays displayed robust performance along with low reagent requirements and can potentially be employed as general HTS formats for the discovery of inhibitors for any MTase.

摘要

甲基转移酶(MTases)在细胞过程中发挥着多样化的作用。异常的甲基化水平与许多疾病有关,这表明需要鉴定和开发针对每种 MTase 的小分子抑制剂。特异性抑制剂可用作研究各自 MTase 功能和验证治疗潜力的探针。高通量筛选(HTS)是识别初始命中物以进一步优化的强大方法。在这里,我们报告了一种基于荧光的 MTase 测定法的开发,并将这种格式与最近开发的 MTase-Glo 发光测定法进行了比较,以应用于 HTS。我们使用蛋白质 N 端甲基转移酶 1(NTMT1)作为模型系统,将其微型化为 1536 孔定量 HTS 格式。通过对 1428 种具有药理活性的化合物进行初步筛选和后续验证,我们发现 MTase-Glo 产生的假阳性率低于基于荧光的 MTase 测定法。尽管如此,两种测定法都具有强大的性能,同时试剂需求低,并且可以作为发现任何 MTase 的抑制剂的通用 HTS 格式。

相似文献

1
Optimization of High-Throughput Methyltransferase Assays for the Discovery of Small Molecule Inhibitors.
ACS Comb Sci. 2020 Aug 10;22(8):422-432. doi: 10.1021/acscombsci.0c00077. Epub 2020 Jun 27.
2
Direct High-Throughput Screening Assay for mRNA Cap Guanine-N7 Methyltransferase Activity.
Chemistry. 2020 Sep 1;26(49):11266-11275. doi: 10.1002/chem.202001036. Epub 2020 Aug 10.
3
Aptamer Displacement Screen for Flaviviral RNA Methyltransferase Inhibitors.
J Biomol Screen. 2014 Sep;19(8):1147-53. doi: 10.1177/1087057114533147. Epub 2014 May 2.
4
High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2.
J Biol Chem. 2018 Aug 31;293(35):13750-13765. doi: 10.1074/jbc.RA118.004274. Epub 2018 Jun 26.
6
Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus.
BMC Bioinformatics. 2011;12 Suppl 13(Suppl 13):S24. doi: 10.1186/1471-2105-12-S13-S24. Epub 2011 Nov 30.
7
Development of specific dengue virus 2'-O- and N7-methyltransferase assays for antiviral drug screening.
Antiviral Res. 2013 Sep;99(3):292-300. doi: 10.1016/j.antiviral.2013.06.001. Epub 2013 Jun 12.
9
Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery.
Antiviral Res. 2014 Jun;106:61-70. doi: 10.1016/j.antiviral.2014.03.013. Epub 2014 Apr 1.
10
Discovery of potent DOT1L inhibitors by AlphaLISA based High Throughput Screening assay.
Bioorg Med Chem. 2018 May 1;26(8):1751-1758. doi: 10.1016/j.bmc.2018.02.020. Epub 2018 Feb 24.

引用本文的文献

1
Quinoline-based compounds can inhibit diverse enzymes that act on DNA.
Cell Chem Biol. 2024 Dec 19;31(12):2112-2127.e6. doi: 10.1016/j.chembiol.2024.09.007. Epub 2024 Oct 21.
2
Closing in on human methylation-the versatile family of seven-β-strand (METTL) methyltransferases.
Nucleic Acids Res. 2024 Oct 28;52(19):11423-11441. doi: 10.1093/nar/gkae816.
3
Ocr-mediated suppression of BrxX unveils a phage counter-defense mechanism.
Nucleic Acids Res. 2024 Aug 12;52(14):8580-8594. doi: 10.1093/nar/gkae608.
4
A sequential one-pot approach for rapid and convenient characterization of putative restriction-modification systems.
mSystems. 2023 Dec 21;8(6):e0081723. doi: 10.1128/msystems.00817-23. Epub 2023 Oct 16.
5
Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Specific DNA Adenine Methyltransferase.
ACS Chem Biol. 2023 Apr 21;18(4):734-745. doi: 10.1021/acschembio.3c00035. Epub 2023 Feb 22.
6
Venglustat Inhibits Protein N-Terminal Methyltransferase 1 in a Substrate-Competitive Manner.
J Med Chem. 2022 Sep 22;65(18):12334-12345. doi: 10.1021/acs.jmedchem.2c01050. Epub 2022 Sep 8.
7
Structure, dynamics, and molecular inhibition of the Staphylococcus aureus mA22-tRNA methyltransferase TrmK.
J Biol Chem. 2022 Jun;298(6):102040. doi: 10.1016/j.jbc.2022.102040. Epub 2022 May 17.
8
A Direct Assay for Measuring the Activity and Inhibition of Coactivator-Associated Arginine Methyltransferase 1.
Biochemistry. 2022 May 17;61(11):1055-63. doi: 10.1021/acs.biochem.2c00075.
9
Effects of Oncohistone Mutations and PTM Crosstalk on the N-Terminal Acetylation Activities of NatD.
ACS Chem Biol. 2023 Apr 21;18(4):693-700. doi: 10.1021/acschembio.1c00840. Epub 2022 Jan 19.
10
Mechanisms and inhibitors of nicotinamide -methyltransferase.
RSC Med Chem. 2021 May 19;12(8):1254-1261. doi: 10.1039/d1md00016k. eCollection 2021 Aug 18.

本文引用的文献

1
Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities.
Cancer Lett. 2020 Feb 1;470:134-140. doi: 10.1016/j.canlet.2019.11.013. Epub 2019 Nov 13.
2
Discovery of Bisubstrate Inhibitors for Protein N-Terminal Methyltransferase 1.
J Med Chem. 2019 Apr 11;62(7):3773-3779. doi: 10.1021/acs.jmedchem.9b00206. Epub 2019 Mar 27.
3
Chemical Biology of Protein N-Terminal Methyltransferases.
Chembiochem. 2019 Apr 15;20(8):976-984. doi: 10.1002/cbic.201800615. Epub 2019 Feb 13.
4
An asparagine/glycine switch governs product specificity of human N-terminal methyltransferase NTMT2.
Commun Biol. 2018 Nov 2;1:183. doi: 10.1038/s42003-018-0196-2. eCollection 2018.
5
A snapshot of lead-generation strategies.
Nat Rev Drug Discov. 2018 Jul 30;17(8):534. doi: 10.1038/nrd.2018.129.
6
High-throughput screening with nucleosome substrate identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2.
J Biol Chem. 2018 Aug 31;293(35):13750-13765. doi: 10.1074/jbc.RA118.004274. Epub 2018 Jun 26.
7
Chemical probes and drug leads from advances in synthetic planning and methodology.
Nat Rev Drug Discov. 2018 May;17(5):333-352. doi: 10.1038/nrd.2018.53. Epub 2018 Apr 13.
9
Direct Detection of Products from S-Adenosylmethionine-Dependent Enzymes Using a Competitive Fluorescence Polarization Assay.
Anal Chem. 2018 Feb 6;90(3):1740-1747. doi: 10.1021/acs.analchem.7b03556. Epub 2018 Jan 9.
10
Epigenetic assays for chemical biology and drug discovery.
Clin Epigenetics. 2017 Apr 21;9:41. doi: 10.1186/s13148-017-0342-6. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验