Suppr超能文献

采用细胞染色法对生物多样性细胞类型的参考化学物质进行表型分析。

Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay.

机构信息

Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC, USA.

Oak Ridge Associated Universities (ORAU), Oak Ridge, TN, USA.

出版信息

SLAS Discov. 2020 Aug;25(7):755-769. doi: 10.1177/2472555220928004. Epub 2020 Jun 17.

Abstract

Cell Painting is a high-throughput phenotypic profiling assay that uses fluorescent cytochemistry to visualize a variety of organelles and high-content imaging to derive a large number of morphological features at the single-cell level. Most Cell Painting studies have used the U-2 OS cell line for chemical or functional genomics screening. The Cell Painting assay can be used with many other human-derived cell types, given that the assay is based on the use of fluoroprobes that label organelles that are present in most (if not all) human cells. Questions remain, however, regarding the optimization steps required and overall ease of deployment of the Cell Painting assay to novel cell types. Here, we used the Cell Painting assay to characterize the phenotypic effects of 14 phenotypic reference chemicals in concentration-response screening mode across six biologically diverse human-derived cell lines (U-2 OS, MCF7, HepG2, A549, HTB-9 and ARPE-19). All cell lines were labeled using the same cytochemistry protocol, and the same set of phenotypic features was calculated. We found it necessary to optimize image acquisition settings and cell segmentation parameters for each cell type, but did not adjust the cytochemistry protocol. For some reference chemicals, similar subsets of phenotypic features corresponding to a particular organelle were associated with the highest-effect magnitudes in each affected cell type. Overall, for certain chemicals, the Cell Painting assay yielded qualitatively similar biological activity profiles among a group of diverse, morphologically distinct human-derived cell lines without the requirement for cell type-specific optimization of cytochemistry protocols.

摘要

细胞画像是一种高通量表型分析检测方法,它利用荧光细胞化学技术来可视化各种细胞器,并利用高内涵成像技术在单细胞水平上获得大量形态特征。大多数细胞画谱研究都使用 U-2 OS 细胞系进行化学或功能基因组筛选。细胞画谱检测可以用于许多其他源自人类的细胞类型,因为该检测方法基于使用荧光探针标记存在于大多数(如果不是全部)人类细胞中的细胞器。然而,对于需要优化的步骤以及将细胞画谱检测方法应用于新型细胞类型的总体易用性,仍然存在一些问题。在这里,我们使用细胞画谱检测方法在浓度反应筛选模式下,在六个具有不同生物学特性的人类衍生细胞系(U-2 OS、MCF7、HepG2、A549、HTB-9 和 ARPE-19)中,对 14 种表型参考化学物质的表型效应进行了特征描述。所有细胞系均使用相同的细胞化学方案进行标记,并计算了相同的表型特征集。我们发现有必要针对每种细胞类型优化图像采集设置和细胞分割参数,但无需调整细胞化学方案。对于某些参考化学物质,与特定细胞器相对应的类似表型特征子集与受影响的每种细胞类型中的最高效应幅度相关。总体而言,对于某些化学物质,细胞画谱检测方法在一组形态不同的多样化人类衍生细胞系中产生了定性相似的生物学活性谱,而无需针对细胞化学方案进行特定于细胞类型的优化。

相似文献

1
Phenotypic Profiling of Reference Chemicals across Biologically Diverse Cell Types Using the Cell Painting Assay.
SLAS Discov. 2020 Aug;25(7):755-769. doi: 10.1177/2472555220928004. Epub 2020 Jun 17.
2
Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling.
Toxicol Appl Pharmacol. 2020 Jan 15;389:114876. doi: 10.1016/j.taap.2019.114876. Epub 2019 Dec 30.
3
Application of Cell Painting for chemical hazard evaluation in support of screening-level chemical assessments.
Toxicol Appl Pharmacol. 2023 Jun 1;468:116513. doi: 10.1016/j.taap.2023.116513. Epub 2023 Apr 11.
4
Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes.
Nat Protoc. 2016 Sep;11(9):1757-74. doi: 10.1038/nprot.2016.105. Epub 2016 Aug 25.
6
Comparison of Approaches for Determining Bioactivity Hits from High-Dimensional Profiling Data.
SLAS Discov. 2021 Feb;26(2):292-308. doi: 10.1177/2472555220950245. Epub 2020 Aug 29.
7
High-Throughput Transcriptomics Screen of ToxCast Chemicals in U-2 OS Cells.
Toxicol Appl Pharmacol. 2024 Oct;491:117073. doi: 10.1016/j.taap.2024.117073. Epub 2024 Aug 17.
9
The Cell Painting Assay as a Screening Tool for the Discovery of Bioactivities in New Chemical Matter.
Methods Mol Biol. 2019;1888:115-126. doi: 10.1007/978-1-4939-8891-4_6.
10
Assessing the performance of the Cell Painting assay across different imaging systems.
Cytometry A. 2023 Nov;103(11):915-926. doi: 10.1002/cyto.a.24786. Epub 2023 Oct 3.

引用本文的文献

1
Screening for variable drug responses using human iPSC cohorts.
PLoS One. 2025 May 30;20(5):e0323953. doi: 10.1371/journal.pone.0323953. eCollection 2025.
2
Morphological profiling data resource enables prediction of chemical compound properties.
iScience. 2025 Apr 16;28(5):112445. doi: 10.1016/j.isci.2025.112445. eCollection 2025 May 16.
6
Cell Painting: a decade of discovery and innovation in cellular imaging.
Nat Methods. 2025 Feb;22(2):254-268. doi: 10.1038/s41592-024-02528-8. Epub 2024 Dec 5.
7
SPACe: an open-source, single-cell analysis of Cell Painting data.
Nat Commun. 2024 Nov 23;15(1):10170. doi: 10.1038/s41467-024-54264-4.
9
Unleashing the potential of cell painting assays for compound activities and hazards prediction.
Front Toxicol. 2024 Jul 17;6:1401036. doi: 10.3389/ftox.2024.1401036. eCollection 2024.
10
A Decade in a Systematic Review: The Evolution and Impact of Cell Painting.
bioRxiv. 2024 May 7:2024.05.04.592531. doi: 10.1101/2024.05.04.592531.

本文引用的文献

1
Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling.
Toxicol Appl Pharmacol. 2020 Jan 15;389:114876. doi: 10.1016/j.taap.2019.114876. Epub 2019 Dec 30.
4
Biophysical comparison of four silver nanoparticles coatings using microscopy, hyperspectral imaging and flow cytometry.
PLoS One. 2019 Jul 31;14(7):e0219078. doi: 10.1371/journal.pone.0219078. eCollection 2019.
5
Anti-tubulin agents of natural origin: Targeting taxol, vinca, and colchicine binding domains.
Eur J Med Chem. 2019 Jun 1;171:310-331. doi: 10.1016/j.ejmech.2019.03.025. Epub 2019 Mar 14.
8
9
Evaluation of Machine Learning Classifiers to Predict Compound Mechanism of Action When Transferred across Distinct Cell Lines.
SLAS Discov. 2019 Mar;24(3):224-233. doi: 10.1177/2472555218820805. Epub 2019 Jan 29.
10
BMDExpress 2: enhanced transcriptomic dose-response analysis workflow.
Bioinformatics. 2019 May 15;35(10):1780-1782. doi: 10.1093/bioinformatics/bty878.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验