Suppr超能文献

3D打印的干细胞衍生神经祖细胞生成脊髓支架。

3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds.

作者信息

Joung Daeha, Truong Vincent, Neitzke Colin C, Guo Shuang-Zhuang, Walsh Patrick J, Monat Joseph R, Meng Fanben, Park Sung Hyun, Dutton James R, Parr Ann M, McAlpine Michael C

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States.

出版信息

Adv Funct Mater. 2018 Sep 26;28(39). doi: 10.1002/adfm.201801850. Epub 2018 Aug 9.

Abstract

A bioengineered spinal cord is fabricated via extrusion-based multi-material 3D bioprinting, in which clusters of induced pluripotent stem cell (iPSC)-derived spinal neuronal progenitor cells (sNPCs) and oligodendrocyte progenitor cells (OPCs) are placed in precise positions within 3D printed biocompatible scaffolds during assembly. The location of a cluster of cells, of a single type or multiple types, is controlled using a point-dispensing printing method with a 200 μm center-to-center spacing within 150 μm wide channels. The bioprinted sNPCs differentiate and extend axons throughout microscale scaffold channels, and the activity of these neuronal networks is confirmed by physiological spontaneous calcium flux studies. Successful bioprinting of OPCs in combination with sNPCs demonstrates a multicellular neural tissue engineering approach, where the ability to direct the patterning and combination of transplanted neuronal and glial cells can be beneficial in rebuilding functional axonal connections across areas of central nervous system (CNS) tissue damage. This platform can be used to prepare novel biomimetic, hydrogel-based scaffolds modeling complex CNS tissue architecture and harnessed to develop new clinical approaches to treat neurological diseases, including spinal cord injury.

摘要

通过基于挤出的多材料3D生物打印制造生物工程脊髓,其中在组装过程中,诱导多能干细胞(iPSC)衍生的脊髓神经元祖细胞(sNPC)和少突胶质细胞祖细胞(OPC)簇被放置在3D打印的生物相容性支架内的精确位置。使用点分配打印方法控制单一类型或多种类型细胞簇的位置,在150μm宽的通道内中心间距为200μm。生物打印的sNPC在整个微观尺度支架通道中分化并延伸轴突,并且通过生理自发钙通量研究证实了这些神经网络的活性。OPC与sNPC的成功生物打印展示了一种多细胞神经组织工程方法,其中指导移植的神经元和胶质细胞的图案化和组合的能力在重建中枢神经系统(CNS)组织损伤区域的功能性轴突连接方面可能是有益的。该平台可用于制备模拟复杂CNS组织结构的新型仿生水凝胶基支架,并用于开发治疗包括脊髓损伤在内的神经系统疾病的新临床方法。

相似文献

1
3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds.
Adv Funct Mater. 2018 Sep 26;28(39). doi: 10.1002/adfm.201801850. Epub 2018 Aug 9.
2
3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111707. doi: 10.1016/j.msec.2020.111707. Epub 2020 Nov 6.
3
Biomimetic 3D-printed scaffolds for spinal cord injury repair.
Nat Med. 2019 Feb;25(2):263-269. doi: 10.1038/s41591-018-0296-z. Epub 2019 Jan 14.
4
3D bioprinted neural tissue constructs for spinal cord injury repair.
Biomaterials. 2021 May;272:120771. doi: 10.1016/j.biomaterials.2021.120771. Epub 2021 Mar 25.
8
Innovative 3D bioprinting approaches for advancing brain science and medicine: a literature review.
Biomed Phys Eng Express. 2024 Sep 25;10(6). doi: 10.1088/2057-1976/ad795c.
10
3D bioprinting applications in neural tissue engineering for spinal cord injury repair.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110741. doi: 10.1016/j.msec.2020.110741. Epub 2020 Feb 19.

引用本文的文献

1
3D modeling of neural microenvironment through a multi-scaffold assembly approach.
Mater Today Bio. 2025 Jul 14;33:102086. doi: 10.1016/j.mtbio.2025.102086. eCollection 2025 Aug.
2
Bioprinted Organoids: An Innovative Engine in Biomedicine.
Adv Sci (Weinh). 2025 Sep;12(33):e07317. doi: 10.1002/advs.202507317. Epub 2025 Jul 25.
4
5
Scalable Biofabrication of Functional 3D Scaffolds via Synergy of Autopilot Single-Jet Electrospun 3D PCL Fiber Scaffolds and Cell-Laden Hydrogels.
ACS Appl Mater Interfaces. 2025 Aug 27;17(34):47878-47893. doi: 10.1021/acsami.5c07425. Epub 2025 Jul 22.
6
Generation of Neural Organoids and Their Application in Disease Modeling and Regenerative Medicine.
Adv Sci (Weinh). 2025 Aug;12(29):e01198. doi: 10.1002/advs.202501198. Epub 2025 May 24.
7
Personalized Stem Cell-Based Regeneration in Spinal Cord Injury Care.
Int J Mol Sci. 2025 Apr 19;26(8):3874. doi: 10.3390/ijms26083874.
10
Microalgae-enriched (bio)inks for 3D bioprinting of cultured seafood.
NPJ Sci Food. 2025 Feb 12;9(1):23. doi: 10.1038/s41538-025-00386-y.

本文引用的文献

1
3D Printed Organ Models with Physical Properties of Tissue and Integrated Sensors.
Adv Mater Technol. 2018 Mar;3(3). doi: 10.1002/admt.201700235. Epub 2017 Dec 6.
2
Microstructure and in vivo characterization of multi-channel nerve guidance scaffolds.
Biomed Mater. 2018 Apr 25;13(4):044104. doi: 10.1088/1748-605X/aaad85.
5
Bioprinting for Neural Tissue Engineering.
Trends Neurosci. 2018 Jan;41(1):31-46. doi: 10.1016/j.tins.2017.11.001. Epub 2017 Dec 6.
6
3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening.
Front Bioeng Biotechnol. 2017 Nov 17;5:69. doi: 10.3389/fbioe.2017.00069. eCollection 2017.
7
Spatially and Temporally Controlled Hydrogels for Tissue Engineering.
Mater Sci Eng R Rep. 2017 Sep;119:1-35. doi: 10.1016/j.mser.2017.07.001. Epub 2017 Jul 25.
8
3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding.
ACS Appl Mater Interfaces. 2017 Jun 14;9(23):20086-20097. doi: 10.1021/acsami.7b04216. Epub 2017 Jun 5.
9
Cell transplantation therapy for spinal cord injury.
Nat Neurosci. 2017 Apr 25;20(5):637-647. doi: 10.1038/nn.4541.
10
Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs.
Adv Mater. 2017 May;29(19). doi: 10.1002/adma.201606061. Epub 2017 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验