Suppr超能文献

HAPPENN 是一种用于预测治疗性肽类的溶血活性的新型工具,它采用了神经网络。

HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.

机构信息

UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.

出版信息

Sci Rep. 2020 Jul 2;10(1):10869. doi: 10.1038/s41598-020-67701-3.

Abstract

The growing prevalence of resistance to antibiotics motivates the search for new antibacterial agents. Antimicrobial peptides are a diverse class of well-studied membrane-active peptides which function as part of the innate host defence system, and form a promising avenue in antibiotic drug research. Some antimicrobial peptides exhibit toxicity against eukaryotic membranes, typically characterised by hemolytic activity assays, but currently, the understanding of what differentiates hemolytic and non-hemolytic peptides is limited. This study leverages advances in machine learning research to produce a novel artificial neural network classifier for the prediction of hemolytic activity from a peptide's primary sequence. The classifier achieves best-in-class performance, with cross-validated accuracy of [Formula: see text] and Matthews correlation coefficient of 0.71. This innovative classifier is available as a web server at https://research.timmons.eu/happenn , allowing the research community to utilise it for in silico screening of peptide drug candidates for high therapeutic efficacies.

摘要

抗生素耐药性的日益普遍促使人们寻找新的抗菌剂。抗菌肽是一类经过充分研究的膜活性肽,它们作为先天宿主防御系统的一部分发挥作用,是抗生素药物研究的一个有前途的途径。一些抗菌肽对真核细胞膜具有毒性,通常通过溶血活性测定来表征,但目前,对区分溶血肽和非溶血肽的机制的理解还很有限。本研究利用机器学习研究的进展,从肽的一级序列中产生了一种新的人工神经网络分类器,用于预测溶血活性。该分类器的性能达到了同类最佳水平,交叉验证准确率为[Formula: see text],马修斯相关系数为 0.71。这个创新的分类器可以作为一个网络服务器在 https://research.timmons.eu/happenn 上使用,使研究界能够利用它对肽类药物候选物进行计算机筛选,以获得高治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验