UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
Sci Rep. 2020 Jul 2;10(1):10869. doi: 10.1038/s41598-020-67701-3.
The growing prevalence of resistance to antibiotics motivates the search for new antibacterial agents. Antimicrobial peptides are a diverse class of well-studied membrane-active peptides which function as part of the innate host defence system, and form a promising avenue in antibiotic drug research. Some antimicrobial peptides exhibit toxicity against eukaryotic membranes, typically characterised by hemolytic activity assays, but currently, the understanding of what differentiates hemolytic and non-hemolytic peptides is limited. This study leverages advances in machine learning research to produce a novel artificial neural network classifier for the prediction of hemolytic activity from a peptide's primary sequence. The classifier achieves best-in-class performance, with cross-validated accuracy of [Formula: see text] and Matthews correlation coefficient of 0.71. This innovative classifier is available as a web server at https://research.timmons.eu/happenn , allowing the research community to utilise it for in silico screening of peptide drug candidates for high therapeutic efficacies.
抗生素耐药性的日益普遍促使人们寻找新的抗菌剂。抗菌肽是一类经过充分研究的膜活性肽,它们作为先天宿主防御系统的一部分发挥作用,是抗生素药物研究的一个有前途的途径。一些抗菌肽对真核细胞膜具有毒性,通常通过溶血活性测定来表征,但目前,对区分溶血肽和非溶血肽的机制的理解还很有限。本研究利用机器学习研究的进展,从肽的一级序列中产生了一种新的人工神经网络分类器,用于预测溶血活性。该分类器的性能达到了同类最佳水平,交叉验证准确率为[Formula: see text],马修斯相关系数为 0.71。这个创新的分类器可以作为一个网络服务器在 https://research.timmons.eu/happenn 上使用,使研究界能够利用它对肽类药物候选物进行计算机筛选,以获得高治疗效果。