Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea.
Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
Nat Biotechnol. 2020 Sep;38(9):1037-1043. doi: 10.1038/s41587-020-0573-5. Epub 2020 Jul 6.
Base editors, including adenine base editors (ABEs) and cytosine base editors (CBEs), are widely used to induce point mutations. However, determining whether a specific nucleotide in its genomic context can be edited requires time-consuming experiments. Furthermore, when the editable window contains multiple target nucleotides, various genotypic products can be generated. To develop computational tools to predict base-editing efficiency and outcome product frequencies, we first evaluated the efficiencies of an ABE and a CBE and the outcome product frequencies at 13,504 and 14,157 target sequences, respectively, in human cells. We found that there were only modest asymmetric correlations between the activities of the base editors and Cas9 at the same targets. Using deep-learning-based computational modeling, we built tools to predict the efficiencies and outcome frequencies of ABE- and CBE-directed editing at any target sequence, with Pearson correlations ranging from 0.50 to 0.95. These tools and results will facilitate modeling and therapeutic correction of genetic diseases by base editing.
碱基编辑器,包括腺嘌呤碱基编辑器(ABEs)和胞嘧啶碱基编辑器(CBEs),被广泛用于诱导点突变。然而,要确定其基因组背景中的特定核苷酸是否可以被编辑,需要进行耗时的实验。此外,当可编辑窗口包含多个靶核苷酸时,会产生各种基因型产物。为了开发用于预测碱基编辑效率和产物频率的计算工具,我们首先评估了 ABE 和 CBE 在人类细胞中的 13504 和 14157 个靶序列中的效率和产物频率。我们发现,在相同的靶标上,碱基编辑器和 Cas9 的活性之间仅存在适度的不对称相关性。我们使用基于深度学习的计算模型,构建了用于预测任何靶序列的 ABE 和 CBE 定向编辑效率和产物频率的工具,Pearson 相关系数范围为 0.50 至 0.95。这些工具和结果将有助于通过碱基编辑对遗传疾病进行建模和治疗校正。