Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Nature. 2020 Sep;585(7824):288-292. doi: 10.1038/s41586-020-2475-6. Epub 2020 Jul 8.
The mitochondrial electron transport chain (ETC) is necessary for tumour growth and its inhibition has demonstrated anti-tumour efficacy in combination with targeted therapies. Furthermore, human brain and lung tumours display robust glucose oxidation by mitochondria. However, it is unclear why a functional ETC is necessary for tumour growth in vivo. ETC function is coupled to the generation of ATP-that is, oxidative phosphorylation and the production of metabolites by the tricarboxylic acid (TCA) cycle. Mitochondrial complexes I and II donate electrons to ubiquinone, resulting in the generation of ubiquinol and the regeneration of the NAD+ and FAD cofactors, and complex III oxidizes ubiquinol back to ubiquinone, which also serves as an electron acceptor for dihydroorotate dehydrogenase (DHODH)-an enzyme necessary for de novo pyrimidine synthesis. Here we show impaired tumour growth in cancer cells that lack mitochondrial complex III. This phenotype was rescued by ectopic expression of Ciona intestinalis alternative oxidase (AOX), which also oxidizes ubiquinol to ubiquinone. Loss of mitochondrial complex I, II or DHODH diminished the tumour growth of AOX-expressing cancer cells deficient in mitochondrial complex III, which highlights the necessity of ubiquinone as an electron acceptor for tumour growth. Cancer cells that lack mitochondrial complex III but can regenerate NAD+ by expression of the NADH oxidase from Lactobacillus brevis (LbNOX) targeted to the mitochondria or cytosol were still unable to grow tumours. This suggests that regeneration of NAD+ is not sufficient to drive tumour growth in vivo. Collectively, our findings indicate that tumour growth requires the ETC to oxidize ubiquinol, which is essential to drive the oxidative TCA cycle and DHODH activity.
线粒体电子传递链 (ETC) 是肿瘤生长所必需的,其抑制作用与靶向治疗相结合已显示出抗肿瘤功效。此外,人类大脑和肺部肿瘤通过线粒体显示出强大的葡萄糖氧化作用。然而,尚不清楚为什么在体内,功能性 ETC 对肿瘤生长是必需的。ETC 功能与 ATP 的产生相关联——即氧化磷酸化和三羧酸 (TCA) 循环产生代谢物。线粒体复合物 I 和 II 将电子传递给泛醌,从而产生泛醇并再生 NAD+和 FAD 辅因子,复合物 III 将泛醇氧化回泛醌,泛醌也是二氢乳清酸脱氢酶 (DHODH) 的电子受体——DHODH 是从头合成嘧啶所必需的酶。在这里,我们展示了缺乏线粒体复合物 III 的癌细胞中肿瘤生长受损。这种表型通过外源性表达海鞘替代氧化酶 (AOX) 得到挽救,AOX 也将泛醇氧化为泛醌。线粒体复合物 I、II 或 DHODH 的缺失会降低缺乏线粒体复合物 III 的 AOX 表达癌细胞的肿瘤生长,这突出了泛醌作为电子受体对于肿瘤生长的必要性。缺乏线粒体复合物 III 但可以通过表达靶向线粒体或细胞质的短乳杆菌 NADH 氧化酶 (LbNOX) 再生 NAD+的癌细胞仍然无法生长肿瘤。这表明 NAD+的再生不足以在体内驱动肿瘤生长。总的来说,我们的研究结果表明,肿瘤生长需要 ETC 氧化泛醇,这对于驱动氧化 TCA 循环和 DHODH 活性是必不可少的。