Suppr超能文献

基于细胞谱系的胶质母细胞瘤分层。

Cell Lineage-Based Stratification for Glioblastoma.

机构信息

Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Cancer Cell. 2020 Sep 14;38(3):366-379.e8. doi: 10.1016/j.ccell.2020.06.003. Epub 2020 Jul 9.

Abstract

Glioblastoma, the predominant adult malignant brain tumor, has been computationally classified into molecular subtypes whose functional relevance remains to be comprehensively established. Tumors from genetically engineered glioblastoma mouse models initiated by identical driver mutations in distinct cells of origin portray unique transcriptional profiles reflective of their respective lineage. Here, we identify corresponding transcriptional profiles in human glioblastoma and describe patient-derived xenografts with species-conserved subtype-discriminating functional properties. The oligodendrocyte lineage-associated glioblastoma subtype requires functional ERBB3 and harbors unique therapeutic sensitivities. These results highlight the importance of cell lineage in glioblastoma independent of driver mutations and provide a methodology for functional glioblastoma classification for future clinical investigations.

摘要

胶质母细胞瘤是成人中最主要的恶性脑肿瘤,已经通过计算方法将其分为分子亚型,但其功能相关性仍有待全面建立。由相同的驱动基因突变在不同起源细胞引发的基因工程胶质母细胞瘤小鼠模型的肿瘤表现出独特的转录谱,反映了其各自的谱系。在这里,我们在人类胶质母细胞瘤中识别出相应的转录谱,并描述了具有物种保守的亚型区分功能特性的患者来源异种移植物。与少突胶质细胞谱系相关的胶质母细胞瘤亚型需要功能性 ERBB3,并具有独特的治疗敏感性。这些结果强调了胶质母细胞瘤中细胞谱系的重要性,而与驱动突变无关,并为未来的临床研究提供了功能胶质母细胞瘤分类的方法。

相似文献

1
Cell Lineage-Based Stratification for Glioblastoma.
Cancer Cell. 2020 Sep 14;38(3):366-379.e8. doi: 10.1016/j.ccell.2020.06.003. Epub 2020 Jul 9.
3
CD90 Expression Controls Migration and Predicts Dasatinib Response in Glioblastoma.
Clin Cancer Res. 2017 Dec 1;23(23):7360-7374. doi: 10.1158/1078-0432.CCR-17-1549. Epub 2017 Sep 22.
4
Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations.
PLoS One. 2015 May 8;10(5):e0125838. doi: 10.1371/journal.pone.0125838. eCollection 2015.
6
Translational validation of personalized treatment strategy based on genetic characteristics of glioblastoma.
PLoS One. 2014 Aug 1;9(8):e103327. doi: 10.1371/journal.pone.0103327. eCollection 2014.
9
MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin.
Cancer Cell. 2015 Dec 14;28(6):715-729. doi: 10.1016/j.ccell.2015.10.005. Epub 2015 Nov 25.
10
Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes.
Cancer Cell. 2015 Oct 12;28(4):429-440. doi: 10.1016/j.ccell.2015.09.007.

引用本文的文献

2
Ioning out glioblastoma: ferroptosis mechanisms and therapeutic frontiers.
Cell Death Discov. 2025 Aug 26;11(1):407. doi: 10.1038/s41420-025-02711-6.
4
Genetically Engineered Brain Organoids Recapitulate Spatial and Developmental States of Glioblastoma Progression.
Adv Sci (Weinh). 2025 Mar;12(10):e2410110. doi: 10.1002/advs.202410110. Epub 2025 Jan 21.
6
Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers.
Nat Commun. 2024 Nov 9;15(1):9699. doi: 10.1038/s41467-024-53954-3.
7
Deciphering the topological landscape of glioma using a network theory framework.
Sci Rep. 2024 Nov 5;14(1):26724. doi: 10.1038/s41598-024-77856-y.
8
SOX10 mediates glioblastoma cell-state plasticity.
EMBO Rep. 2024 Nov;25(11):5113-5140. doi: 10.1038/s44319-024-00258-8. Epub 2024 Sep 16.
9
Multi-omics and pharmacological characterization of patient-derived glioma cell lines.
Nat Commun. 2024 Aug 8;15(1):6740. doi: 10.1038/s41467-024-51214-y.
10
Glioblastoma Neurovascular Progenitor Orchestrates Tumor Cell Type Diversity.
bioRxiv. 2024 Jul 24:2024.07.24.604840. doi: 10.1101/2024.07.24.604840.

本文引用的文献

1
An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma.
Cell. 2019 Aug 8;178(4):835-849.e21. doi: 10.1016/j.cell.2019.06.024. Epub 2019 Jul 18.
2
Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction.
Nat Neurosci. 2019 Apr;22(4):545-555. doi: 10.1038/s41593-018-0333-8. Epub 2019 Feb 18.
3
Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages.
Cell Rep. 2019 Jan 8;26(2):394-406.e5. doi: 10.1016/j.celrep.2018.12.044.
4
Human Hippocampal Neurogenesis Persists throughout Aging.
Cell Stem Cell. 2018 Apr 5;22(4):589-599.e5. doi: 10.1016/j.stem.2018.03.015.
5
Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults.
Nature. 2018 Mar 15;555(7696):377-381. doi: 10.1038/nature25975. Epub 2018 Mar 7.
6
SCENIC: single-cell regulatory network inference and clustering.
Nat Methods. 2017 Nov;14(11):1083-1086. doi: 10.1038/nmeth.4463. Epub 2017 Oct 9.
8
The whole-genome landscape of medulloblastoma subtypes.
Nature. 2017 Jul 19;547(7663):311-317. doi: 10.1038/nature22973.
10
Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis.
Science. 2017 Jun 30;356(6345):1383-1386. doi: 10.1126/science.aal3839. Epub 2017 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验