Suppr超能文献

肠道微生物群落的进化和生态后果。

Evolutionary and ecological consequences of gut microbial communities.

作者信息

Moran Nancy A, Ochman Howard, Hammer Tobin J

机构信息

Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703 USA.

出版信息

Annu Rev Ecol Evol Syst. 2019 Nov;50(1):451-475. doi: 10.1146/annurev-ecolsys-110617-062453. Epub 2019 Aug 29.

Abstract

Animals are distinguished by having guts: organs that must extract nutrients from food while barring invasion by pathogens. Most guts are colonized by non-pathogenic microorganisms, but the functions of these microbes, or even the reasons why they occur in the gut, vary widely among animals. Sometimes these microorganisms have co-diversified with hosts; sometimes they live mostly elsewhere in the environment. Either way, gut microorganisms often benefit hosts. Benefits may reflect evolutionary "addiction" whereby hosts incorporate gut microorganisms into normal developmental processes. But benefits often include novel ecological capabilities; for example, many metazoan clades exist by virtue of gut communities enabling new dietary niches. Animals vary immensely in their dependence on gut microorganisms, from lacking them entirely, to using them as food, to obligate dependence for development, nutrition, or protection. Many consequences of gut microorganisms for hosts can be ascribed to microbial community processes and the host's ability to shape these processes.

摘要

动物的特征在于拥有肠道

这些器官必须从食物中提取营养,同时防止病原体入侵。大多数肠道都有非致病性微生物定殖,但这些微生物的功能,甚至它们出现在肠道中的原因,在动物之间差异很大。有时这些微生物与宿主共同分化;有时它们大多生活在环境中的其他地方。不管怎样,肠道微生物通常对宿主有益。益处可能反映了进化上的“依赖”,即宿主将肠道微生物纳入正常发育过程。但益处通常包括新的生态能力;例如,许多后生动物类群的存在得益于肠道群落创造了新的饮食生态位。动物对肠道微生物的依赖程度差异极大,从完全没有肠道微生物,到将它们作为食物,再到在发育、营养或保护方面的 obligate 依赖。肠道微生物对宿主的许多影响可归因于微生物群落过程以及宿主塑造这些过程的能力。

“obligate”在生物学语境中常表示“专性的”“必需的”等意思,这里根据语境意译为“绝对的”“完全的”等,以使译文更通顺,但严格来说“obligate”直接音译为“专性的”更准确,不过整体译文意思能表达清楚。

相似文献

1
Evolutionary and ecological consequences of gut microbial communities.
Annu Rev Ecol Evol Syst. 2019 Nov;50(1):451-475. doi: 10.1146/annurev-ecolsys-110617-062453. Epub 2019 Aug 29.
2
3
Enzyme producing insect gut microbes: an unexplored biotechnological aspect.
Crit Rev Biotechnol. 2022 May;42(3):384-402. doi: 10.1080/07388551.2021.1942777. Epub 2021 Oct 6.
5
Why do hosts malfunction without microbes? Missing benefits versus evolutionary addiction.
Trends Microbiol. 2024 Feb;32(2):132-141. doi: 10.1016/j.tim.2023.07.012. Epub 2023 Aug 29.
6
Established Cotton Stainer Gut Bacterial Mutualists Evade Regulation by Host Antimicrobial Peptides.
Appl Environ Microbiol. 2019 Jun 17;85(13). doi: 10.1128/AEM.00738-19. Print 2019 Jul 1.
7
Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life?
mSystems. 2018 Oct 23;3(5). doi: 10.1128/mSystems.00097-18. eCollection 2018 Sep-Oct.
10
Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.
mBio. 2015 Nov 10;6(6):e01282-15. doi: 10.1128/mBio.01282-15.

引用本文的文献

3
The microbiome of the sucking louse Linognathus stenopsis (Phthiraptera, Anoplura, Linognathiidae).
J Med Entomol. 2025 Jul 17;62(4):930-937. doi: 10.1093/jme/tjaf060.
4
Editorial: Gut microbiota's role in high-altitude animal adaptation.
Front Microbiol. 2025 May 29;16:1613028. doi: 10.3389/fmicb.2025.1613028. eCollection 2025.
5
Associations between gut microbiota and diet composition of three arid-adapted rodent species from the Inner Mongolia grassland.
Front Microbiol. 2025 May 7;16:1569592. doi: 10.3389/fmicb.2025.1569592. eCollection 2025.
7
Advancements in analytical methods for studying the human gut microbiome.
J Biol Methods. 2024 Nov 18;12(1):e99010038. doi: 10.14440/jbm.2024.0050. eCollection 2025.
8
Origin and function of beneficial bacterial symbioses in insects.
Nat Rev Microbiol. 2025 Mar 27. doi: 10.1038/s41579-025-01164-z.

本文引用的文献

2
Our missing microbes: Short-term antibiotic courses have long-term consequences.
Cleve Clin J Med. 2018 Dec;85(12):928-930. doi: 10.3949/ccjm.85gr.18005.
3
Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations.
Trends Microbiol. 2019 Feb;27(2):105-117. doi: 10.1016/j.tim.2018.11.003. Epub 2018 Nov 26.
4
Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life?
mSystems. 2018 Oct 23;3(5). doi: 10.1128/mSystems.00097-18. eCollection 2018 Sep-Oct.
6
Species-level functional profiling of metagenomes and metatranscriptomes.
Nat Methods. 2018 Nov;15(11):962-968. doi: 10.1038/s41592-018-0176-y. Epub 2018 Oct 30.
7
Transmission modes of the mammalian gut microbiota.
Science. 2018 Oct 26;362(6413):453-457. doi: 10.1126/science.aat7164.
8
Microbiome-assisted carrion preservation aids larval development in a burying beetle.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11274-11279. doi: 10.1073/pnas.1812808115. Epub 2018 Oct 15.
9
Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life.
Cell Host Microbe. 2018 Jul 11;24(1):146-154.e4. doi: 10.1016/j.chom.2018.06.007.
10
Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome.
Cell Host Microbe. 2018 Jul 11;24(1):133-145.e5. doi: 10.1016/j.chom.2018.06.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验