Suppr超能文献

DNA甲基化时钟及其对衰老表型和健康寿命的预测能力。

DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan.

作者信息

Bergsma Tessa, Rogaeva Ekaterina

机构信息

Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.

Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.

出版信息

Neurosci Insights. 2020 Jul 21;15:2633105520942221. doi: 10.1177/2633105520942221. eCollection 2020.

Abstract

The number of age predictors based on DNA methylation (DNAm) profile is rising due to their potential in predicting healthspan and application in age-related illnesses, such as neurodegenerative diseases. The cumulative assessment of DNAm levels at age-related CpGs (DNAm clock) may reflect biological aging. Such DNAm clocks have been developed using various training models and could mirror different aspects of disease/aging mechanisms. Hence, evaluating several DNAm clocks together may be the most effective strategy in capturing the complexity of the aging process. However, various confounders may influence the outcome of these age predictors, including genetic and environmental factors, as well as technical differences in the selected DNAm arrays. These factors should be taken into consideration when interpreting DNAm clock predictions. In the current review, we discuss 15 reported DNAm clocks with consideration for their utility in investigating neurodegenerative diseases and suggest research directions towards developing a more optimal measure for biological aging.

摘要

基于DNA甲基化(DNAm)图谱的年龄预测指标数量不断增加,这是因为它们在预测健康寿命方面具有潜力,且可应用于与年龄相关的疾病,如神经退行性疾病。对与年龄相关的CpG位点处的DNAm水平进行累积评估(DNAm时钟)可能反映生物衰老。此类DNAm时钟已通过各种训练模型开发出来,能够反映疾病/衰老机制的不同方面。因此,一起评估多个DNAm时钟可能是捕捉衰老过程复杂性的最有效策略。然而,各种混杂因素可能会影响这些年龄预测指标的结果,包括遗传和环境因素,以及所选DNAm阵列中的技术差异。在解释DNAm时钟预测结果时应考虑这些因素。在当前综述中,我们讨论了15种已报道的DNAm时钟,并考虑了它们在研究神经退行性疾病中的实用性,同时提出了开发更优化的生物衰老测量方法的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1d4/7376380/2d5d94a56e7a/10.1177_2633105520942221-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验