Suppr超能文献

用于乙肝病毒相关性肝细胞癌患者肝硬化诊断的人工神经网络模型

Artificial Neural Network Model for Liver Cirrhosis Diagnosis in Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma.

作者信息

Mai Rong-Yun, Zeng Jie, Mo Yi-Shuai, Liang Rong, Lin Yan, Wu Su-Su, Piao Xue-Min, Gao Xing, Wu Guo-Bin, Li Le-Qun, Ye Jia-Zhou

机构信息

Department of Hepatobilliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China.

Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning 530021, People's Republic of China.

出版信息

Ther Clin Risk Manag. 2020 Jul 17;16:639-649. doi: 10.2147/TCRM.S257218. eCollection 2020.

Abstract

BACKGROUND

Testing for the presence of liver cirrhosis (LC) is one of the most critical diagnostic and prognostic assessments for patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). More non-invasive tools are needed to diagnose LC but the predictive abilities of current models are still inconclusive. This study aimed to develop and validate a novel and non-invasive artificial neural network (ANN) model for diagnosing LC in patients with HBV-related HCC using routine laboratory serological indicators.

METHODS

A total of 1152 HBV-related HCC patients who underwent hepatectomy were included and randomly divided into the training set (n = 864, 75%) and validation set (n = 288, 25%). The ANN model was constructed from the training set using multivariate Logistic regression analysis and then verified in the validation set.

RESULTS

The morbidity of LC in the training and validation sets was 41.2% and 46.8%, respectively. Multivariate analysis showed that age, platelet count, prothrombin time and total bilirubin were independent risk factors for LC ( < 0.05). The area under the ROC curve (AUC) analyses revealed that the ANN model had higher predictive accuracy than the Logistic model (ANN: 0.757 vs Logistic: 0.721; < 0.001), and other scoring systems (ANN: 0.757 vs CP: 0.532, MELD: 0.594, ALBI: 0.575, APRI: 0.621, FIB-4: 0.644, AAR: 0.491, and GPR: 0.604; < 0.05 for all) in diagnosing LC. Similar results were obtained in the validation set.

CONCLUSION

The ANN model has better diagnostic capabilities than other commonly used models and scoring systems in assessing LC risk in patients with HBV-related HCC.

摘要

背景

检测肝硬化(LC)的存在是对乙型肝炎病毒(HBV)相关肝细胞癌(HCC)患者进行的最关键的诊断和预后评估之一。需要更多的非侵入性工具来诊断LC,但目前模型的预测能力仍无定论。本研究旨在开发并验证一种新型的非侵入性人工神经网络(ANN)模型,该模型使用常规实验室血清学指标诊断HBV相关HCC患者的LC。

方法

共纳入1152例行肝切除术的HBV相关HCC患者,并随机分为训练集(n = 864,75%)和验证集(n = 288,25%)。使用多变量Logistic回归分析从训练集中构建ANN模型,然后在验证集中进行验证。

结果

训练集和验证集中LC的发病率分别为41.2%和46.8%。多变量分析显示,年龄、血小板计数、凝血酶原时间和总胆红素是LC的独立危险因素(<0.05)。ROC曲线下面积(AUC)分析显示,ANN模型在诊断LC方面比Logistic模型具有更高的预测准确性(ANN:0.757 vs Logistic:0.721;<0.001),以及比其他评分系统(ANN:0.757 vs CP:0.532,MELD:0.594,ALBI:0.575,APRI:0.621,FIB-4:0.644,AAR:0.491,GPR:0.604;所有比较均<0.05)具有更高的预测准确性。在验证集中也获得了类似的结果。

结论

在评估HBV相关HCC患者的LC风险方面,ANN模型比其他常用模型和评分系统具有更好的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5538/7381792/a083dfbc2b58/TCRM-16-639-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验