Hospital for Sick Children, Neurosciences and Mental Health, Toronto, ON, Canada.
Department of Physiology, University of Toronto, Toronto, ON, Canada.
Front Neural Circuits. 2020 Jul 15;14:42. doi: 10.3389/fncir.2020.00042. eCollection 2020.
1-photon (1p) calcium imaging is an increasingly prevalent method in behavioral neuroscience. Numerous analysis pipelines have been developed to improve the reliability and scalability of pre-processing and ROI extraction for these large calcium imaging datasets. Despite these advancements in pre-processing methods, manual curation of the extracted spatial footprints and calcium traces of neurons remains important for quality control. Here, we propose an additional semi-automated curation step for sorting spatial footprints and calcium traces from putative neurons extracted using the popular constrained non-negative matrixfactorization for microendoscopic data (CNMF-E) algorithm. We used the automated machine learning (AutoML) tools TPOT and AutoSklearn to generate classifiers to curate the extracted ROIs trained on a subset of human-labeled data. AutoSklearn produced the best performing classifier, achieving an F1 score >92% on the ground truth test dataset. This automated approach is a useful strategy for filtering ROIs with relatively few labeled data points and can be easily added to pre-existing pipelines currently using CNMF-E for ROI extraction.
1 光子(1p)钙成像在行为神经科学中是一种越来越流行的方法。为了提高这些大型钙成像数据集的预处理和 ROI 提取的可靠性和可扩展性,已经开发了许多分析管道。尽管在预处理方法方面取得了这些进展,但对于质量控制,手动整理提取的神经元的空间足迹和钙迹仍然很重要。在这里,我们提出了一种额外的半自动整理步骤,用于对使用流行的微内窥镜数据约束非负矩阵分解(CNMF-E)算法提取的假定神经元的空间足迹和钙迹进行分类。我们使用自动化机器学习(AutoML)工具 TPOT 和 AutoSklearn 生成分类器,以在人类标记数据的子集上对提取的 ROI 进行训练。AutoSklearn 生成的分类器性能最佳,在真实测试数据集上的 F1 得分>92%。这种自动化方法是一种有用的策略,用于过滤具有相对较少标记数据点的 ROI,并且可以轻松添加到当前使用 CNMF-E 进行 ROI 提取的现有管道中。