Suppr超能文献

定量苯并咪唑抗性和寄生线虫β-微管蛋白等位基因的适合度效应。

Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles.

机构信息

Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.

Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Int J Parasitol Drugs Drug Resist. 2020 Dec;14:28-36. doi: 10.1016/j.ijpddr.2020.08.003. Epub 2020 Aug 20.

Abstract

Infections by parasitic nematodes inflict a huge burden on the health of humans and livestock throughout the world. Anthelmintic drugs are the first line of defense against these infections. Unfortunately, resistance to these drugs is rampant and continues to spread. To improve treatment strategies, we must understand the genetics and molecular mechanisms that underlie resistance. Studies of the fungus Aspergillus nidulans and the free-living nematode Caenorhabditis elegans discovered that a beta-tubulin gene is mutated in benzimidazole (BZ) resistant strains. In parasitic nematode populations, three beta-tubulin alleles, F167Y, E198A, and F200Y, have long been correlated with resistance. Additionally, improvements in sequencing technologies have identified new alleles - E198V, E198L, E198K, E198I, and E198Stop - also correlated with BZ resistance. However, none of these alleles have been proven to cause resistance. To empirically demonstrate this point, we independently introduced the F167Y, E198A, and F200Y alleles as well as two of the newly identified alleles, E198V and E198L, into the BZ susceptible C. elegans N2 genetic background using the CRISPR-Cas9 system. These genome-edited strains were exposed to both albendazole and fenbendazole to quantitatively measure animal responses to BZs. We used a range of concentrations for each BZ compound to define response curves and found that all five of the alleles conferred resistance to BZ compounds equal to a loss of the entire beta-tubulin gene. These results prove that the parasite beta-tubulin alleles cause resistance. The E198V allele is found at low frequencies along with the E198L allele in natural parasite populations, suggesting that it could affect fitness. We performed competitive fitness assays and demonstrated that the E198V allele reduces animal health, supporting the hypothesis that this allele might be less fit in field populations. Overall, we present a powerful platform to quantitatively assess anthelmintic resistance and effects of specific resistance alleles on organismal fitness in the presence or absence of the drug.

摘要

寄生虫线虫感染给全世界人类和家畜的健康带来了巨大负担。抗蠕虫药物是防治这些感染的第一道防线。不幸的是,这些药物的耐药性正在迅速蔓延。为了改进治疗策略,我们必须了解耐药性的遗传和分子机制。对真菌粗糙脉孢菌和自由生活线虫秀丽隐杆线虫的研究发现,苯并咪唑(BZ)耐药株的β-微管蛋白基因发生了突变。在寄生线虫群体中,F167Y、E198A 和 F200Y 三个β-微管蛋白等位基因长期以来与耐药性相关。此外,测序技术的改进还发现了新的等位基因——E198V、E198L、E198K、E198I 和 E198Stop,这些等位基因也与 BZ 耐药性相关。然而,这些等位基因都没有被证明能引起耐药性。为了从经验上证明这一点,我们使用 CRISPR-Cas9 系统,在 BZ 敏感的 C. elegans N2 遗传背景下,独立引入 F167Y、E198A 和 F200Y 等位基因以及两个新发现的等位基因 E198V 和 E198L,然后用 albendazole 和 fenbendazole 对这些经过基因组编辑的菌株进行处理,定量测量动物对 BZ 的反应。我们使用每种 BZ 化合物的一系列浓度来定义反应曲线,发现这五个等位基因都使 BZ 化合物产生耐药性,相当于整个β-微管蛋白基因的缺失。这些结果证明寄生虫β-微管蛋白等位基因导致耐药性。E198V 等位基因在自然寄生虫群体中与 E198L 等位基因一起以低频率存在,表明它可能会影响适应性。我们进行了竞争适应性测定,证明 E198V 等位基因降低了动物的健康状况,支持了这样一种假说,即在野外种群中,该等位基因的适应性可能较差。总的来说,我们提供了一个强大的平台,可以在存在或不存在药物的情况下,定量评估抗蠕虫药物的耐药性和特定耐药等位基因对生物体适应性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e4/7473882/b2c1669d2415/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验