Suppr超能文献

跨人类组织的转录组特征鉴定出功能性罕见遗传变异。

Transcriptomic signatures across human tissues identify functional rare genetic variation.

机构信息

Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Science. 2020 Sep 11;369(6509). doi: 10.1126/science.aaz5900. Epub 2020 Sep 10.

Abstract

Rare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs. We developed Watershed, a probabilistic model that integrates multiple genomic and transcriptomic signals to predict variant function, validated these predictions in additional cohorts and through experimental assays, and used them to assess RVs in the UK Biobank, the Million Veterans Program, and the Jackson Heart Study. Our results link thousands of RVs to diverse molecular effects and provide evidence to associate RVs affecting the transcriptome with human traits.

摘要

人类基因组中存在大量罕见的遗传变异,鉴定它们的功能和表型影响是一个主要挑战。测量异常基因表达有助于识别功能强大的罕见变异(RVs)。在这里,我们通过分析来自多组织 RNA-seq 数据的基因表达、等位基因特异性表达和选择性剪接,扩展了对遗传驱动转录组异常的检测,并证明每种信号都提供了独特的 RV 类别。我们开发了 Watershed,这是一种概率模型,可整合多种基因组和转录组信号来预测变体功能,通过额外的队列和实验检测对这些预测进行了验证,并将其用于评估英国生物库、百万退伍军人计划和杰克逊心脏研究中的 RV。我们的结果将数千个 RV 与多种分子效应联系起来,并提供证据将影响转录组的 RV 与人类特征联系起来。

相似文献

1
Transcriptomic signatures across human tissues identify functional rare genetic variation.
Science. 2020 Sep 11;369(6509). doi: 10.1126/science.aaz5900. Epub 2020 Sep 10.
3
Precision medicine for mood disorders: objective assessment, risk prediction, pharmacogenomics, and repurposed drugs.
Mol Psychiatry. 2021 Jul;26(7):2776-2804. doi: 10.1038/s41380-021-01061-w. Epub 2021 Apr 8.
4
Nonconserved Long Intergenic Noncoding RNAs Associate With Complex Cardiometabolic Disease Traits.
Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):501-511. doi: 10.1161/ATVBAHA.120.315045. Epub 2020 Nov 12.
5
Tracing the evolutionary pathway of SARS-CoV-2 through RNA sequencing analysis.
Sci Rep. 2025 Jul 4;15(1):23961. doi: 10.1038/s41598-025-09911-1.
8
Gene-based whole genome sequencing meta-analysis of 250 circulating proteins in three isolated European populations.
Mol Metab. 2022 Jul;61:101509. doi: 10.1016/j.molmet.2022.101509. Epub 2022 Apr 30.
9
Transcriptomic signatures of rare variant impacts across sex and the X chromosome.
HGG Adv. 2025 May 31;6(3):100463. doi: 10.1016/j.xhgg.2025.100463.

引用本文的文献

3
Transcriptomic signatures of rare variant impacts across sex and the X chromosome.
HGG Adv. 2025 May 31;6(3):100463. doi: 10.1016/j.xhgg.2025.100463.
5
Aberrant gene expression prediction across human tissues.
Nat Commun. 2025 Mar 29;16(1):3061. doi: 10.1038/s41467-025-58210-w.
9
Statistical framework for calling allelic imbalance in high-throughput sequencing data.
Nat Commun. 2025 Feb 18;16(1):1739. doi: 10.1038/s41467-024-55513-2.
10
Kidney multiome-based genetic scorecard reveals convergent coding and regulatory variants.
Science. 2025 Feb 7;387(6734):eadp4753. doi: 10.1126/science.adp4753.

本文引用的文献

1
Exploiting the GTEx resources to decipher the mechanisms at GWAS loci.
Genome Biol. 2021 Jan 26;22(1):49. doi: 10.1186/s13059-020-02252-4.
2
The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science. 2020 Sep 11;369(6509):1318-1330. doi: 10.1126/science.aaz1776.
3
A polyclonal allelic expression assay for detecting regulatory effects of transcript variants.
Genome Med. 2020 Sep 11;12(1):79. doi: 10.1186/s13073-020-00777-8.
4
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
6
Genetic regulatory variation in populations informs transcriptome analysis in rare disease.
Science. 2019 Oct 18;366(6463):351-356. doi: 10.1126/science.aay0256. Epub 2019 Oct 10.
7
Ultrarare variants drive substantial cis heritability of human gene expression.
Nat Genet. 2019 Sep;51(9):1349-1355. doi: 10.1038/s41588-019-0487-7. Epub 2019 Sep 2.
8
Fusion transcripts: Unexploited vulnerabilities in cancer?
Wiley Interdiscip Rev RNA. 2020 Jan;11(1):e1562. doi: 10.1002/wrna.1562. Epub 2019 Aug 13.
9
SPTBN1 and cancer, which links?
J Cell Physiol. 2020 Jan;235(1):17-25. doi: 10.1002/jcp.28975. Epub 2019 Jun 17.
10
Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts.
Nat Med. 2019 Jun;25(6):911-919. doi: 10.1038/s41591-019-0457-8. Epub 2019 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验