Suppr超能文献

曲马多酸基赖氨酸特异性脱甲基酶 1 抑制剂:总结与展望。

Tranylcypromine Based Lysine-Specific Demethylase 1 Inhibitor: Summary and Perspective.

机构信息

Key Lab of Advanced Drug Preparation Technologies, Ministry of Education of China, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.

出版信息

J Med Chem. 2020 Dec 10;63(23):14197-14215. doi: 10.1021/acs.jmedchem.0c00919. Epub 2020 Sep 30.

Abstract

Histone lysine-specific demethylase 1 (LSD1/KDM1A) has become an important and promising anticancer target since it was first identified in 2004 and specially demethylates lysine residues of histone H3K4me1/2 and H3K9me1/2. LSD1 is ubiquitously overexpressed in diverse cancers, and abrogation of LSD1 results in inhibition of proliferation, invasion, and migration in cancer cells. Over the past decade, a number of biologically active small-molecule LSD1 inhibitors have been developed. To date, six -2-phenylcyclopropylamine (TCP)-based LSD1 inhibitors (including TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, and ORY-2001) that covalently bind to the flavin adenine dinucleotide (FAD) within the LSD1 catalytic cavity have already entered into clinical trials. Here, we provide an overview about the structures, activities, and structure-activity relationship (SAR) of TCP-based LSD1 inhibitors that mainly covers the literature from 2008 to date. The opportunities, challenges, and future research directions in this emerging and promising field are also discussed.

摘要

组蛋白赖氨酸特异性去甲基化酶 1(LSD1/KDM1A)自 2004 年首次被鉴定以来,已成为一个重要且有前途的抗癌靶点,它专门对组蛋白 H3K4me1/2 和 H3K9me1/2 的赖氨酸残基进行去甲基化。LSD1 在多种癌症中广泛过表达,抑制 LSD1 可导致癌细胞增殖、侵袭和迁移受到抑制。在过去的十年中,已经开发出了许多具有生物活性的小分子 LSD1 抑制剂。迄今为止,已经有六种基于 2-苯基环丙胺(TCP)的 LSD1 抑制剂(包括 TCP、ORY-1001、GSK-2879552、INCB059872、IMG-7289 和 ORY-2001)进入临床试验,它们通过共价结合 LSD1 催化腔中的黄素腺嘌呤二核苷酸(FAD)发挥作用。在这里,我们概述了基于 TCP 的 LSD1 抑制剂的结构、活性和构效关系(SAR),主要涵盖了 2008 年至今的文献。还讨论了这一新兴且有前途的领域的机遇、挑战和未来研究方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验