Suppr超能文献

细菌促进了杂食性草食动物系统中植物次生化合物的降解。

Bacteria Contribute to Plant Secondary Compound Degradation in a Generalist Herbivore System.

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

mBio. 2020 Sep 15;11(5):e02146-20. doi: 10.1128/mBio.02146-20.

Abstract

Herbivores must overcome a variety of plant defenses, including coping with plant secondary compounds (PSCs). To help detoxify these defensive chemicals, several insect herbivores are known to harbor gut microbiota with the metabolic capacity to degrade PSCs. Leaf-cutter ants are generalist herbivores, obtaining sustenance from specialized fungus gardens that act as external digestive systems and which degrade the diverse collection of plants foraged by the ants. There is evidence that certain PSCs harm , the fungal cultivar of leaf-cutter ants, suggesting a role for the -dominant bacterial community present within fungus gardens. In this study, we investigated the ability of symbiotic bacteria present within fungus gardens of leaf-cutter ants to degrade PSCs. We cultured fungus garden bacteria, sequenced the genomes of 42 isolates, and identified genes involved in PSC degradation, including genes encoding cytochrome P450 enzymes and genes in geraniol, cumate, cinnamate, and α-pinene/limonene degradation pathways. Using metatranscriptomic analysis, we showed that some of these degradation genes are expressed Most of the bacterial isolates grew unhindered in the presence of PSCs and, using gas chromatography-mass spectrometry (GC-MS), we determined that isolates from the genera , , , , and degrade α-pinene, β-caryophyllene, or linalool. Using a headspace sampler, we show that subcolonies of fungus gardens reduced α-pinene and linalool over a 36-h period, while strains alone reduced only linalool. Overall, our results reveal that the bacterial communities in fungus gardens play a pivotal role in alleviating the effect of PSCs on the leaf-cutter ant system. Leaf-cutter ants are dominant neotropical herbivores capable of deriving energy from a wide range of plant substrates. The success of leaf-cutter ants is largely due to their external gut, composed of key microbial symbionts, specifically, the fungal mutualist and a consistent bacterial community. Both symbionts are known to have critical roles in extracting energy from plant material, yet comparatively little is known about their roles in the detoxification of plant secondary compounds. In this study, we assessed if the bacterial communities associated with leaf-cutter ant fungus gardens can degrade harmful plant chemicals. We identify plant secondary compound detoxification in leaf-cutter ant gardens as a process that depends on the degradative potential of both the bacterial community and Our findings suggest that the fungus garden and its associated microbial community influence the generalist foraging abilities of the ants, underscoring the importance of microbial symbionts in plant substrate suitability for herbivores.

摘要

食草动物必须克服各种植物防御,包括应对植物次生化合物(PSCs)。为了帮助解毒这些防御性化学物质,几种昆虫食草动物被发现拥有能够代谢降解 PSCs 的肠道微生物群。切叶蚁是杂食性食草动物,它们从专门的真菌园中获取营养,真菌园充当外部消化系统,降解切叶蚁采集的各种植物。有证据表明,某些 PSCs 会损害切叶蚁的真菌品种,这表明真菌园中存在的占主导地位的细菌群落可能发挥了作用。在这项研究中,我们调查了切叶蚁真菌园中存在的共生细菌降解 PSCs 的能力。我们培养了真菌园细菌,对 42 个分离株的基因组进行了测序,并鉴定了与 PSC 降解相关的基因,包括编码细胞色素 P450 酶的基因和香叶醇、肉桂酸、肉桂酸和α-蒎烯/柠檬烯降解途径的基因。通过代谢组学分析,我们表明其中一些降解基因表达。大多数细菌分离株在 PSCs 存在的情况下不受阻碍地生长,并且使用气相色谱-质谱联用 (GC-MS),我们确定来自属、、、和的分离株降解α-蒎烯、β-石竹烯或芳樟醇。使用顶空采样器,我们表明真菌园的亚菌落在 36 小时内降低了α-蒎烯和芳樟醇的浓度,而仅菌株降低了芳樟醇的浓度。总的来说,我们的结果表明,真菌园中细菌群落在缓解 PSCs 对切叶蚁系统的影响方面发挥着关键作用。切叶蚁是具有统治地位的新热带食草动物,能够从广泛的植物基质中获取能量。切叶蚁的成功在很大程度上归功于它们的外部肠道,由关键的微生物共生体组成,特别是真菌共生体 和一致的细菌群落。这两种共生体都被认为在从植物材料中提取能量方面发挥着关键作用,但关于它们在植物次生化合物解毒中的作用,人们知之甚少。在这项研究中,我们评估了与切叶蚁真菌园相关的细菌群落是否能够降解有害的植物化学物质。我们确定切叶蚁真菌园中的植物次生化合物解毒是一个依赖于细菌群落和 的降解潜力的过程。我们的发现表明,真菌园及其相关微生物群落影响着蚂蚁的一般性觅食能力,这凸显了微生物共生体对食草动物适应植物基质的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f81/7492740/cd080b6f519c/mBio.02146-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验