Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
Brief Bioinform. 2021 Mar 22;22(2):1531-1542. doi: 10.1093/bib/bbaa204.
Deep learning (DL), an emerging area of investigation in the fields of machine learning and artificial intelligence, has markedly advanced over the past years. DL techniques are being applied to assist medical professionals and researchers in improving clinical diagnosis, disease prediction and drug discovery. It is expected that DL will help to provide actionable knowledge from a variety of 'big data', including metabolomics data. In this review, we discuss the applicability of DL to metabolomics, while presenting and discussing several examples from recent research. We emphasize the use of DL in tackling bottlenecks in metabolomics data acquisition, processing, metabolite identification, as well as in metabolic phenotyping and biomarker discovery. Finally, we discuss how DL is used in genome-scale metabolic modelling and in interpretation of metabolomics data. The DL-based approaches discussed here may assist computational biologists with the integration, prediction and drawing of statistical inference about biological outcomes, based on metabolomics data.
深度学习(DL)是机器学习和人工智能领域中一个新兴的研究领域,在过去几年中取得了显著的进展。DL 技术正被应用于帮助医学专业人员和研究人员改善临床诊断、疾病预测和药物发现。预计 DL 将有助于从各种“大数据”中提供可操作的知识,包括代谢组学数据。在这篇综述中,我们讨论了 DL 在代谢组学中的适用性,同时介绍和讨论了来自最近研究的几个例子。我们强调了 DL 在解决代谢组学数据获取、处理、代谢物鉴定以及代谢表型和生物标志物发现中的瓶颈方面的应用。最后,我们讨论了 DL 在基因组规模代谢建模和代谢组学数据解释中的应用。这里讨论的基于 DL 的方法可以帮助计算生物学家根据代谢组学数据进行整合、预测和对生物结果进行统计推断。