Suppr超能文献

工程化 ACE2 受体陷阱能有效中和 SARS-CoV-2。

Engineered ACE2 receptor traps potently neutralize SARS-CoV-2.

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158.

Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28046-28055. doi: 10.1073/pnas.2016093117. Epub 2020 Oct 22.

Abstract

An essential mechanism for severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection begins with the viral spike protein binding to the human receptor protein angiotensin-converting enzyme II (ACE2). Here, we describe a stepwise engineering approach to generate a set of affinity optimized, enzymatically inactivated ACE2 variants that potently block SARS-CoV-2 infection of cells. These optimized receptor traps tightly bind the receptor binding domain (RBD) of the viral spike protein and prevent entry into host cells. We first computationally designed the ACE2-RBD interface using a two-stage flexible protein backbone design process that improved affinity for the RBD by up to 12-fold. These designed receptor variants were affinity matured an additional 14-fold by random mutagenesis and selection using yeast surface display. The highest-affinity variant contained seven amino acid changes and bound to the RBD 170-fold more tightly than wild-type ACE2. With the addition of the natural ACE2 collectrin domain and fusion to a human immunoglobulin crystallizable fragment (Fc) domain for increased stabilization and avidity, the most optimal ACE2 receptor traps neutralized SARS-CoV-2-pseudotyped lentivirus and authentic SARS-CoV-2 virus with half-maximal inhibitory concentrations (IC50s) in the 10- to 100-ng/mL range. Engineered ACE2 receptor traps offer a promising route to fighting infections by SARS-CoV-2 and other ACE2-using coronaviruses, with the key advantage that viral resistance would also likely impair viral entry. Moreover, such traps can be predesigned for viruses with known entry receptors for faster therapeutic response without the need for neutralizing antibodies isolated from convalescent patients.

摘要

严重急性呼吸综合征冠状病毒 1(SARS-CoV-1)和严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染的一个基本机制是病毒刺突蛋白与人类受体蛋白血管紧张素转换酶 II(ACE2)结合。在这里,我们描述了一种逐步工程方法,用于生成一组亲和力优化的、酶失活的 ACE2 变体,这些变体能够有效阻断 SARS-CoV-2 感染细胞。这些优化的受体陷阱紧密结合病毒刺突蛋白的受体结合域(RBD),并阻止进入宿主细胞。我们首先使用两阶段灵活蛋白骨架设计过程计算设计 ACE2-RBD 界面,该过程将对 RBD 的亲和力提高了多达 12 倍。通过使用酵母表面展示进行随机诱变和选择,这些设计的受体变体的亲和力进一步提高了 14 倍。亲和力最高的变体包含七个氨基酸变化,与 RBD 的结合亲和力比野生型 ACE2 高 170 倍。通过添加天然 ACE2 集萃素结构域并融合到人免疫球蛋白可结晶片段(Fc)结构域以增加稳定性和亲和力,最优化的 ACE2 受体陷阱中和了 SARS-CoV-2 假型慢病毒和真实 SARS-CoV-2 病毒,半数最大抑制浓度(IC50)在 10-100ng/mL 范围内。工程 ACE2 受体陷阱为抗击 SARS-CoV-2 和其他使用 ACE2 的冠状病毒感染提供了一种有前途的途径,其主要优势是病毒抗性也可能损害病毒进入。此外,由于这些陷阱可以针对已知进入受体的病毒进行预先设计,因此可以更快地做出治疗反应,而无需从康复患者中分离出中和抗体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1655/7668070/d9937cf95ccd/pnas.2016093117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验