Suppr超能文献

厌氧甲烷氧化耦合反硝化是深海冷泉区重要的潜在甲烷汇。

Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps.

机构信息

CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Southern Marine Science and Engineering Guangdong Laboratory, ZhuHai, China.

CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.

出版信息

Sci Total Environ. 2020 Dec 15;748:142459. doi: 10.1016/j.scitotenv.2020.142459. Epub 2020 Sep 23.

Abstract

Microbes play a crucial role in mediating the methane flux in deep-sea cold seep ecosystems, where only methane-related microbes have been well studied, while the whole microbial community and their ecological functions were still largely unknown. Here, we utilized metagenomic data to investigate how the structure and metabolism of microbial community shift in the reduced sediment habitats along the spatial scales. Microbial communities in cold seeps and troughs formed two distinct clades likely driven by environmental factors, such as total sulfur, total phosphate and NO, rather than geographical proximity. The predominance of Methanosarcinales reflected a high potential for methane production. In addition to the already well-reported ANME-1/SRB consortia, prevalence of bacterial Methylomirabilis and archaeal Methanoperedens as important performers in the n-damo process with respective of nitrite and nitrate as respective electron acceptor was observed in deep-sea hydrate-bearing regions as well. Aerobic methane oxidization was conducted mainly by type I methanotrophs at Site F (Formosa Ridge), but also via the n-damo process by Methanoperedens and Methylomirabilis in the Haima seep and Xisha Trough, respectively. Based on the high abundance of those denitrifying-dependent methane oxidizers and their related functional genes, we concluded that the previously overlooked n-damo process might be a major methane sink in cold seeps or in gas hydrate-bearing sediments if nitrate is available in the anoxic zones. The signature of isotopic labeling would be essential to confirm the contribution of different anaerobic methane oxidizing pathways in deep-sea cold seep ecosystems.

摘要

微生物在介导深海冷泉生态系统中的甲烷通量方面起着至关重要的作用,在这些生态系统中,只有与甲烷相关的微生物得到了很好的研究,而整个微生物群落及其生态功能在很大程度上仍然未知。在这里,我们利用宏基因组数据来研究微生物群落的结构和代谢如何沿空间尺度在还原沉积物生境中发生变化。冷泉和海槽中的微生物群落形成了两个不同的分支,这可能是由总硫、总磷酸盐和硝酸盐等环境因素驱动的,而不是由地理位置接近驱动的。Methanosarcinales 的优势反映了甲烷产生的巨大潜力。除了已经报道的 ANME-1/SRB 共生体外,在深海水合物赋存区还观察到细菌 Methylomirabilis 和古菌 Methanoperedens 作为 n-damo 过程中的重要执行者,分别以亚硝酸盐和硝酸盐作为各自的电子受体。好氧甲烷氧化主要由 Formosa Ridge 站点的 I 型甲烷营养菌进行,但在 Haima 冷泉和西沙海槽中,Methanoperedens 和 Methylomirabilis 也分别通过 n-damo 过程进行。基于那些具有脱氮依赖性甲烷氧化功能的基因的高丰度,我们得出结论,在缺氧区存在硝酸盐的情况下,如果硝酸盐在缺氧区存在,以前被忽视的 n-damo 过程可能是冷泉或含天然气水合物沉积物中甲烷的主要汇。稳定同位素标记的特征对于确认深海冷泉生态系统中不同的厌氧甲烷氧化途径的贡献至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验