Suppr超能文献

CRISPR 筛选的 3D 培养模型揭示了 NRF2 的过度激活是通过调节增殖和铁死亡来形成球体的前提条件。

3D Culture Models with CRISPR Screens Reveal Hyperactive NRF2 as a Prerequisite for Spheroid Formation via Regulation of Proliferation and Ferroptosis.

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Cancer Center, Boston, MA 02115, USA.

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Cancer Center, Boston, MA 02115, USA.

出版信息

Mol Cell. 2020 Dec 3;80(5):828-844.e6. doi: 10.1016/j.molcel.2020.10.010. Epub 2020 Oct 30.

Abstract

Cancer-associated mutations that stabilize NRF2, an oxidant defense transcription factor, are predicted to promote tumor development. Here, utilizing 3D cancer spheroid models coupled with CRISPR-Cas9 screens, we investigate the molecular pathogenesis mediated by NRF2 hyperactivation. NRF2 hyperactivation was necessary for proliferation and survival in lung tumor spheroids. Antioxidant treatment rescued survival but not proliferation, suggesting the presence of distinct mechanisms. CRISPR screens revealed that spheroids are differentially dependent on the mammalian target of rapamycin (mTOR) for proliferation and the lipid peroxidase GPX4 for protection from ferroptosis of inner, matrix-deprived cells. Ferroptosis inhibitors blocked death from NRF2 downregulation, demonstrating a critical role of NRF2 in protecting matrix-deprived cells from ferroptosis. Interestingly, proteomics analyses show global enrichment of selenoproteins, including GPX4, by NRF2 downregulation, and targeting NRF2 and GPX4 killed spheroids overall. These results illustrate the value of spheroid culture in revealing environmental or spatial differential dependencies on NRF2 and reveal exploitable vulnerabilities of NRF2-hyperactivated tumors.

摘要

癌症相关突变可稳定 NRF2(一种抗氧化防御转录因子),据预测可促进肿瘤发展。在这里,我们利用 3D 癌症球体模型结合 CRISPR-Cas9 筛选,研究 NRF2 过度激活介导的分子发病机制。NRF2 过度激活对于肺肿瘤球体的增殖和存活是必需的。抗氧化剂处理可挽救存活但不能挽救增殖,这表明存在不同的机制。CRISPR 筛选揭示了球体在增殖方面对哺乳动物雷帕霉素靶蛋白 (mTOR) 的依赖性不同,在保护内部、基质剥夺细胞免受铁死亡方面对脂质过氧化酶 GPX4 的依赖性不同。铁死亡抑制剂阻断了 NRF2 下调导致的死亡,这表明 NRF2 在保护基质剥夺细胞免受铁死亡方面具有关键作用。有趣的是,蛋白质组学分析表明 NRF2 下调会导致包括 GPX4 在内的所有硒蛋白的全局富集,并且靶向 NRF2 和 GPX4 可整体杀死球体。这些结果说明了球体培养在揭示对 NRF2 的环境或空间差异依赖性方面的价值,并揭示了 NRF2 过度激活肿瘤的可利用弱点。

相似文献

2
CRISPR activation screens identify the SWI/SNF ATPases as suppressors of ferroptosis.
Cell Rep. 2024 Jun 25;43(6):114345. doi: 10.1016/j.celrep.2024.114345. Epub 2024 Jun 12.
3
Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells.
Biochem Biophys Res Commun. 2021 Aug 27;567:154-160. doi: 10.1016/j.bbrc.2021.06.051. Epub 2021 Jun 20.
4
Hypermethylation of the Nrf2 Promoter Induces Ferroptosis by Inhibiting the Nrf2-GPX4 Axis in COPD.
Int J Chron Obstruct Pulmon Dis. 2021 Dec 14;16:3347-3362. doi: 10.2147/COPD.S340113. eCollection 2021.
7
PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway.
Cell Death Differ. 2022 Oct;29(10):1982-1995. doi: 10.1038/s41418-022-00990-5. Epub 2022 Apr 5.
9
SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer.
Biochem Biophys Res Commun. 2021 Nov 5;577:158-164. doi: 10.1016/j.bbrc.2021.08.080. Epub 2021 Aug 30.
10
Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death.
Cancer Gene Ther. 2021 Feb;28(1-2):55-63. doi: 10.1038/s41417-020-0182-y. Epub 2020 May 27.

引用本文的文献

1
Differential cell survival outcomes in response to diverse amino acid stress.
Life Sci Alliance. 2025 Sep 5;8(11). doi: 10.26508/lsa.202503324. Print 2025 Nov.
2
Targeting FSP1 triggers ferroptosis in lung cancer.
bioRxiv. 2025 Aug 11:2025.08.07.668766. doi: 10.1101/2025.08.07.668766.
4
Thioredoxin Reductase 1 inhibition triggers ferroptosis in KRAS-independent lung cancers.
bioRxiv. 2025 Jul 30:2025.07.25.666783. doi: 10.1101/2025.07.25.666783.
5
Haloperidol drug repurposing unveils ferroptosis involvement in breast cancer cells.
Sci Rep. 2025 Jul 24;15(1):26948. doi: 10.1038/s41598-025-12645-9.
6
Nanomedicine-Driven Modulation of Reductive Stress for Cancer Therapy.
Adv Sci (Weinh). 2025 Aug;12(32):e01968. doi: 10.1002/advs.202501968. Epub 2025 Jun 26.
7
Decoding the NRF2-NOTCH Crosstalk in Lung Cancer-An Update.
Antioxidants (Basel). 2025 May 29;14(6):657. doi: 10.3390/antiox14060657.
8
Ferritinophagy in cardiovascular diseases: mechanisms and potential therapy.
Mol Cell Biochem. 2025 Jun 20. doi: 10.1007/s11010-025-05301-3.
10
Genes driving three-dimensional growth of immortalized cells and cancer.
Cell Death Dis. 2025 Jun 10;16(1):442. doi: 10.1038/s41419-025-07719-5.

本文引用的文献

2
CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities.
Nature. 2020 Apr;580(7801):136-141. doi: 10.1038/s41586-020-2099-x. Epub 2020 Mar 11.
3
Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer.
Cancer Cell. 2020 Feb 10;37(2):168-182.e4. doi: 10.1016/j.ccell.2019.12.012. Epub 2020 Jan 23.
4
ERBB3 and IGF1R Signaling Are Required for Nrf2-Dependent Growth in KEAP1-Mutant Lung Cancer.
Cancer Res. 2019 Oct 1;79(19):4828-4839. doi: 10.1158/0008-5472.CAN-18-2086. Epub 2019 Aug 15.
5
A Genome-wide Haploid Genetic Screen Identifies Regulators of Glutathione Abundance and Ferroptosis Sensitivity.
Cell Rep. 2019 Feb 5;26(6):1544-1556.e8. doi: 10.1016/j.celrep.2019.01.043.
6
NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.
Redox Biol. 2019 May;23:101107. doi: 10.1016/j.redox.2019.101107. Epub 2019 Jan 11.
7
Improving the metabolic fidelity of cancer models with a physiological cell culture medium.
Sci Adv. 2019 Jan 2;5(1):eaau7314. doi: 10.1126/sciadv.aau7314. eCollection 2019 Jan.
8
Web-Based Search Tool for Visualizing Instrument Performance Using the Triple Knockout (TKO) Proteome Standard.
J Proteome Res. 2019 Feb 1;18(2):687-693. doi: 10.1021/acs.jproteome.8b00737. Epub 2018 Nov 27.
9
Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer.
Free Radic Biol Med. 2018 Dec;129:454-462. doi: 10.1016/j.freeradbiomed.2018.10.426. Epub 2018 Oct 16.
10
RIPK1-dependent mitophagy: A novel mechanism to eliminate cells detached from the extracellular matrix.
Mol Cell Oncol. 2018 May 10;5(4):e1465015. doi: 10.1080/23723556.2018.1465015. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验